You are here

Axisymmetric, Emittance-Compensated Electron Gun

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG03-01ER83211
Agency Tracking Number: 65692S01-II
Amount: $749,473.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Solicitation Year: N/A
Award Year: 2002
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
2425 South 900 West
Salt Lake City, UT 84119
United States
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Merrill Wilson
 (801) 978-2134
Business Contact
 Ray Miller
Title: 65692
Phone: (801) 978-2132
Research Institution

65692 The integration of high temperature ceramics and micro-channel architectures into a heat exchanger would increase the efficiency of indirect-fired power cycles. The resulting improvements in mechanical, corrosion, and performance characteristics would enable operation at approximately 1350¿C and provide advantages over existing super-alloy, refractory coatings and oxide-dispersed-strengthened alloys. This project will develop, fabricate, and test prototypical ceramic heat exchangers, and assess their economic feasibility. Under Phase I, preliminary corrosion studies, mechanical analyses, and the fabrication of sub-scale components were undertaken leading to the development of a proof-of-concept ceramic heat exchanger. Phase 2 will validate the design and functionality of the ceramic heat exchanger using an iterative process in which design parameters are optimized, integrated into functional prototypes, and performance tested. An economic evaluation of the ceramic heat exchanger will be conducted, based on material and device characterization, engineering optimization, and device fabrication. Commercial Applications and Other Benefits as described by the awardee: The integration of high-temperature ceramics and high-efficiency micro-channel devices into a compact heat exchanger should improve the efficiencies of high temperature power cycles. Other applications include fuel cell technology, which requires reliable high temperature regenerators and fuel processors, and chemical synthesis, wherein micro-reactors can improve efficiency, safety, and versatility in the production commodity chemicals.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government