Ultrahigh dielectric strength biotronic capacitors based on sol-gel/DNA-CTMA blends

Award Information
Agency:
Department of Defense
Branch
n/a
Amount:
$749,994.00
Award Year:
2010
Program:
SBIR
Phase:
Phase II
Contract:
FA8650-10-C-5407
Award Id:
92842
Agency Tracking Number:
F083-080-2535
Solicitation Year:
2008
Solicitation Topic Code:
AF083-080
Solicitation Number:
2008.3
Small Business Information
TIPD, L.L.C. (Currently TIPD, LLC)
1430 N. 6th Ave., Tucson, AZ, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
601990778
Principal Investigator:
Li Li
Optical Engineer
(520) 370-6909
lili@tipdllc.com
Business Contact:
James Fountain
Business Manager
(520) 250-4405
fountain@tipdllc.com
Research Institution:
n/a
Abstract
As the power demands of airborne sensor platforms increase there is a growing need for improved capacitor technologies for compact energy storage. While progress has been made on electrolytic supercapacitors as well as nanocomposite composites, an ultrahigh dielectric strength capacitor with high dielectric constant and compatibility with a broad range of associated materials technologies is still lacking. In Phase I of the program we have confirmed that capacitors fabricated from organically modified sol-gel/DNA-CTMA blends have dielectric constants in the range of 6-8 and dielectric breakdown strength on the order of 1kV per micron for a 95/5 blend, nearly an order of magnitude higher than observed for common dielectric polymers. The energy storage potential for the subject capacitors is superior to that of any known polymers. The Phase II effort will be directed at further improving the dielectric performance through both optimized film formation techniques and nanoparticle doping. In parallel, a significant effort will be devoted to developing manufacturing techniques that will scale to large areas, for which a partnership with a polymer film manufacturer is proposed. In Phase II we will further test the temperature and humidity reliability of the manufactured capacitors, with the goal of rapid commercialization. BENEFIT: The growing energy demands of modern society and the desire to reduce dependence on fossil fuels have created an intense interest in new technologies that can impact the energy equation. Energy storage is a key function of any energy system and capacitors are the workhorses of energy storage in electrical systems, thus improvements in capacitor technology will impact the efficiency, size and cost of those systems. Furthermore, emerging flexible optoelectronics technologies such as organic electronics demand the development of subcomponent approaches, such as thin film capacitors, with high performance, low cost, and excellent compatibility with other materials. The proposed biotronic capacitors have the ability to fulfill all of these requirements.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government