Ultrahigh dielectric strength biotronic capacitors based on sol-gel/DNA-CTMA blends

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-10-C-5407
Agency Tracking Number: F083-080-2535
Amount: $749,994.00
Phase: Phase II
Program: SBIR
Awards Year: 2010
Solicitation Year: 2008
Solicitation Topic Code: AF083-080
Solicitation Number: 2008.3
Small Business Information
1430 N. 6th Ave., Tucson, AZ, -
DUNS: 601990778
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Li Li
 Optical Engineer
 (520) 370-6909
Business Contact
 James Fountain
Title: Business Manager
Phone: (520) 250-4405
Email: fountain@tipdllc.com
Research Institution
As the power demands of airborne sensor platforms increase there is a growing need for improved capacitor technologies for compact energy storage. While progress has been made on electrolytic supercapacitors as well as nanocomposite composites, an ultrahigh dielectric strength capacitor with high dielectric constant and compatibility with a broad range of associated materials technologies is still lacking. In Phase I of the program we have confirmed that capacitors fabricated from organically modified sol-gel/DNA-CTMA blends have dielectric constants in the range of 6-8 and dielectric breakdown strength on the order of 1kV per micron for a 95/5 blend, nearly an order of magnitude higher than observed for common dielectric polymers. The energy storage potential for the subject capacitors is superior to that of any known polymers. The Phase II effort will be directed at further improving the dielectric performance through both optimized film formation techniques and nanoparticle doping. In parallel, a significant effort will be devoted to developing manufacturing techniques that will scale to large areas, for which a partnership with a polymer film manufacturer is proposed. In Phase II we will further test the temperature and humidity reliability of the manufactured capacitors, with the goal of rapid commercialization. BENEFIT: The growing energy demands of modern society and the desire to reduce dependence on fossil fuels have created an intense interest in new technologies that can impact the energy equation. Energy storage is a key function of any energy system and capacitors are the workhorses of energy storage in electrical systems, thus improvements in capacitor technology will impact the efficiency, size and cost of those systems. Furthermore, emerging flexible optoelectronics technologies such as organic electronics demand the development of subcomponent approaches, such as thin film capacitors, with high performance, low cost, and excellent compatibility with other materials. The proposed biotronic capacitors have the ability to fulfill all of these requirements.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government