Highly efficient, compact, picosecond green laser for time resolved fluorescence

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43RR028201-01
Agency Tracking Number: RR028201
Amount: $57,294.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: NCRR
Solicitation Number: PHS2010-2
Small Business Information
ADVR, INC.
ADVR, INC., 2310 UNIVERSITY WAY, BLDG 1-1, BOZEMAN, MT, 59715
DUNS: 062674630
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 CHRISTOPHER KALEVA
 () -
Business Contact
 BETSY HECKEL
Phone: () -
Research Institution
N/A
Abstract
DESCRIPTION (provided by applicant): The primary goal of the Phase I effort is to establish the feasibility of fabricating waveguides to realize a significant, (10 fold), increase in performance in the output power of a picosecond pulsed green laser without increasing the peak pump power. The ultimate goal is to develop a fiber pigtailed, compact, cost-effective 530 nm picosecond laser producing 10 mW average power at 80 MHz. In addition to achieving a more flexible laser source through higher output powers and higher pulse repetition frequencies, the higher efficiency enables the manufacture of lower cost 1 mW average power lasers by using lower power, lower cost pumps. Improving the overall performance (increased power, pulse repetition frequency and lifetime with reduced size and cost) will significantly increase the incorporation of this technology into a broad range of time-resolved bioscience applications and thus helping to accelerate new bioscience breakthroughs. In the Phase I effort, AdvR will utilize its experience with nonlinear optical frequency converters to fabricate improved frequency doubling waveguides resulting in a significant increase in pulsed output power from the current 1 mW average power at 40 MHz when using a PicoQuant MOFA 1064 pulsed laser. The key innovation in this effort is to combine three high payoff manufacturing approaches to increasing the second harmonic generation module's efficiency. They are: 1) using tapered, buried waveguide structures to significantly decrease input and output coupling losses (from 50% to 20%), 2) increasing internal waveguide conversion efficiency from 100%/W/cm2 to 300%/W/cm2 by optimizing the waveguide geometry (width and depth), and 3) increasing the overall length of the waveguide (from 1.5cm to 3cm). PUBLIC HEALTH RELEVANCE: The biosciences require the development of time-resolved techniques to investigate cellular functions at the molecular level. The ultimate goal of this SBIR effort is to develop a fiber pigtailed, compact, cost-effective 530 nm picosecond laser producing 10 mW average power at 80 MHz. The higher average power will provide a more flexible laser source, enabling higher pulse repetition frequencies and measurement speed for a variety of bioscience applications. In addition, more efficient waveguide doublers will require less pump power to meet the current 1 mW average power output specification, which will dramatically increase the lifetime of the overall laser system and decrease the pump laser requirements and cost, allowing more researchers to afford the equipment to carry out time-resolved fluorescence research, accelerating bioscience breakthroughs.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government