High-energy, multi-spectral laser for surf-zone mine countermeasures

Award Information
Agency:
Department of Defense
Branch
Navy
Amount:
$0.00
Award Year:
2003
Program:
SBIR
Phase:
Phase I
Contract:
M67854-03-C-7025
Award Id:
64478
Agency Tracking Number:
N012-0546
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
135 S. Taylor Avenue, Louisville, CO, 80027
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
Iain McKinnie
Sr. Research Scientist
(303) 604-2000
iainm@ctilidar.com
Business Contact:
Timothy Carrig
Director Research & Devel
(303) 604-2000
Tim.Carrig@ctilidar.com
Research Institution:
n/a
Abstract
Coherent Technologies, Inc. proposes to develop a transmitter for a surf-zone mine countermeasures (SZMC) system. The sensor will search for mines and surface targets in shallow water, beach and low vegetation areas. The SZMC sensor will use a multi-band,dual-polarization illuminator and produce range-resolved, multi-spectral images suitable for advanced-target-recognition (ATR) algorithm processing. The system will employ a diode-pumped, laser transmitter utilizing patent-pending transmitter technology.Diode-pumping is necessary to ensure ruggedness, energy efficiency, and low maintenance. The proposed transmitter technology enables compactness and minimizes laser cooling requirements. The transmitter is configured in a master oscillator/ power amplifier(MOPA) architecture to enable short (1-3ns) pulse generation in a flat-top beam at all design wavelengths. The MOPA architecture is inherently scalable: each stage is compact and readily ruggedizable, and can provide very efficient heat extraction.The Phase I effort has (i) developed a detailed design for a multi-band transmitter that simultaneously provides an output of 3 45mJ per channel at up to seven lines, with a growth path to higher energy per channel; and (ii) outlined a sensor developmentpath via LADAR and imaging modeling to ensure that the Navy has a useful device at the end of Phase II. The Phase II effort will carry-out the following work:(i) build a MOPA to generate 1.3 micron light under the baseline program(ii) integrate the transmitter with Navy supplied components (such as receive optics and camera) so that a fieldable sensor is available at the end of Phase II.(iii) provide Options to:(1) add the frequency converters to generate the laser lines at 656, 745, and 1489nm, and integrate these with the fieldable sensor(2) build and integrate a second MOPA to generate 1.05-micron light with frequency conversion to 523 nm.(3) build and integrate a third harmonic generator to frequency convert the 1.3-micron light to 438nm.The Navy will then have a functioning sensor for field testing. CTI's proven ability to engineer rugged, electro-optic systems for high shock, vibration and temperature range environments provides leverage for a successful overall development program. Highelectrical efficiency, visible and short-wave infrared, pulsed laser sources are needed for a variety of applications including: detection and imaging, altimetry and ranging, terrain mapping, designation, search and rescue beacons, surgery, photodynamictherapy and cosmetic skin repair.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government