Dynamic Phase Imaging Interference 4D Microscope System

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$107,275.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
1R43RR028170-01
Award Id:
96501
Agency Tracking Number:
RR028170
Solicitation Year:
n/a
Solicitation Topic Code:
NCRR
Solicitation Number:
n/a
Small Business Information
3280 E. HEMISPHERE LOOP, SUITE 146, TUCSON, AZ, 85706
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
111037482
Principal Investigator:
JAMESMILLERD
(520) 294-5600
JAMES.MILLERD@4DTECHNOLOGY.COM
Business Contact:
CATHYORNSTEIN
() -
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): We propose to develop a dynamic quantitative phase-imaging interference 4D microscope system operating in reflection to enable creating phase image movies and quantifying motion of live cells and cellular processes in v itro without the need for adding contrast agents, ultimately having application to clinical measurements in vivo. The primary use of this microscope is to study the structure and mechanics of cells, cellular processes and tissues. This interference microsc ope will enable looking at cellular morphology, cellular development and structures within cells and tissues over periods of time. It is intended to have a flexible design that enables options of different magnifications, resolutions, and wavelengths. The Phase I project focuses on development of a dynamic polarization Michelson interference microscope with a 10-20X objective providing an optical resolution of 2.0 5m. Polarization states will be used to differentiate object and reference beams. Technology o riginally developed for dynamically measuring the seeing quality of large telescopes in situ will be utilized for imaging on the microscopic level. This technology utilizes a pixilated single-shot phase-measurement camera to enable instantaneous quantitati ve determination of optical phase and refractive index variations in real time to create movies of dynamic motions. Goals for Phase I include design of a modular polarization microscope and Michelson interferometer with the integrated pixilated phase-measu rement camera, development of basic software algorithms to extract and create topographic and optical thickness movies of biological objects, testing the optical performance of the system and demonstrating dynamic 4D measurements on a number of in vitro ce ll cultures. PUBLIC HEALTH RELEVANCE: This dynamic quantitative phase-imaging technology implemented within an interferometric microscope system represents a key element in advancing the ability to image tissues, cells, and cellular components in re al-time without the need for toxic contrasts agents to observe the motion and growth of cells in living biological objects, and discern differences between types of cells. This instrument will create dynamic 4D phase image movies of cellular events for stu dying in vitro cellular structure and morphology, motion, motility and mechanics.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government