Computational Modeling in Support of High Altitude Testing Facilities

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$99,992.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
NNX07CA86P
Award Id:
84014
Agency Tracking Number:
066007
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
6210 Keller's Church Road, Pipersville, PA, 18947
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
929950012
Principal Investigator:
Vineet Ahuja
Principal Investigator
(215) 766-1520
vineet@craft-tech.com
Business Contact:
Paula Schachter
Business Official
(215) 766-1520
schachte@craft-tech.com
Research Institute:
n/a
Abstract
Simulation technology plays an important role in rocket engine test facility design and development by assessing risks, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for J2-X testing because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs require a complex network of diffuser ducts, steam ejector trains, fast operating valves, spray nozzles and flow diverters that need to be characterized for steady state performance. More importantly, integrated facility designs will also have to be evaluated for startup/shutdown transients that can trigger engine unstart modes leading to catastrophic failure. The proposed innovation expands on the multi-element unstructured CFD which has been validated for complex valve/feed systems and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The focus here will be on extending this capability to include advanced models for supersonic diffuser design, steam ejector performance, spray nozzle cooling efficiency, plume aspiration dynamics and isolation valve operation.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government