Efficient and Accurate Computational Framework for Injector Design and Analysis

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNM07AA19C
Agency Tracking Number: 053802
Amount: $50,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2007
Solicitation Year: 2005
Solicitation Topic Code: X7.01
Solicitation Number: N/A
Small Business Information
Combustion Research and Flow Technology
6210 Kellers Church Road, Pipersville, PA, 18947-1020
DUNS: 929950012
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Ashvin Hosangadi
 Principal Investigator
 (215) 766-1520
Business Contact
 Paula Schachter
Title: Business Official
Phone: (215) 766-1520
Email: schachte@craft-tech.com
Research Institution
The proposed effort addresses a current need for high fidelity simulation tools to support the design and analysis of combustion devices for the Constellation program and Exploration Mission that includes earth-to-orbit, upper stage, as well as in-space propulsion systems. Injector designs are a critical component of robust thrust chamber assembly designs since they impact combustion chamber instability and its transient response. Inadequate injector designs have been the cause of major failures during engine development of all earlier liquid rocket systems including the SSME; the root cause for this may be attributed to the use of relatively simple empirically based, one-dimensional tools in the design process that are incapable of identifying localized failures driven by three-dimensional geometry and physics effects. The proposed three-dimensional, CFD tool will focus on rigorous modeling of the mixing and combustion processes in cryogenic liquid-gas injectors that operate in the trans-critical and sub-critical regime and exhibit strong non-linear sensitivities to real fluid thermodynamics, as well as turbulent mixing effects. The advanced models developed will permit improved predictions of combustion chamber mean heat flux and localized peaks, as well as lay the foundation for predicting unsteady response of the injector and its coupling to the feed system dynamics.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government