A High Fidelity Computational Tool for Modeling Thermal Vent Systems in Cryogenic Tanks

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX09CD32P
Agency Tracking Number: 084481
Amount: $99,979.00
Phase: Phase I
Program: SBIR
Awards Year: 2009
Solicitation Year: 2008
Solicitation Topic Code: X7.01
Solicitation Number: N/A
Small Business Information
Combustion Research and Flow Technology
6210 Keller's Church Road, Pipersville, PA, 18947-1020
DUNS: 929950012
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Ashvin Hosangadi
 Principal Investigator
 (215) 766-1520
 hosangad@craft-tech.com
Business Contact
 Paula Schachter
Title: Business Official
Phone: (215) 766-1520
Email: schachte@craft-tech.com
Research Institution
N/A
Abstract
Control and management of cryogenic propellant tank pressures in low gravity is an important technical challenge to overcome for future long duration space missions. Heat leaking into the propellant tanks leads to self-pressurization of the tank due to vaporization. Advanced techniques such as thermodynamic vent systems (TVS) are currently being designed for low-gravity space systems. However, these systems are more complex to analyze and system level tools based on lumped, homogeneous models are inadequate for determining sensitivities to multi-dimensional fluid transport and dispersed multi-phase effects. The innovation proposed here is a comprehensive, CFD framework to support analyses of cryogenic tank management systems that will incorporate both real-fluid equations of state for cryogenic fluid mixtures with rigorous fluid property definitions, as well as an advanced dispersed phase spray model that permits non-equilibrium drag and heat transfer with the surrounding continuum fluid. The proposed effort will evaluate various sub-models for the vaporization/condensation of the cryogenic fluid droplets in an environment that includes a mixture of vapor and non-condensable gas. This technology will impact cryogenic systems for long duration space exploration activities.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government