Fouling-Resistant Ultrafiltration Membranes for Treatment of Oily Bilge Water

Award Information
Agency:
Environmental Protection Agency
Branch
n/a
Amount:
$70,000.00
Award Year:
2002
Program:
SBIR
Phase:
Phase I
Contract:
68D02015
Award Id:
56280
Agency Tracking Number:
68D02015
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
325 Water Street, Wilmington, DE, 19804
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
StuartNemser
() -
Business Contact:
(302) 999-7996
Research Institute:
n/a
Abstract
There is a recognized need for more effective and economical treatment processes for oily bilge waters. Direct filtration through currently available ultrafiltration (UF) membranes is a mechanically simple process that can provide excellent effluent quality. A limitation to more extensive use of this technology is the tendency of the hydrophilic membranes currently used to foul in the presence of oils, with a resultant drop in permeation capacity. Compact Membrane Systems, Inc. (CMS) has developed proprietary, inherently nonfouling UF membranes. In tests with simulated naval graywater, a CMS membrane delivered two to three times the steady-state permeate flow of a conventional hydrophilic UF membrane at process conditions typical of commercial installations. With the CMS membrane, the operating time between cleaning was more than three times longer. The goal of this project is to demonstrate that similar increases in permeate flux and operating time between cleanings can be achieved in the treatment of oily bilge waters. The low free surface energy of the CMS UF membrane should minimize adsorption of both oily substances and those bilge water constituents that foul hydrophilic membranes. During Phase I, CMS will vary water quality conditions by varying oil percentage and those additives (e.g., surfactants) that enhance fouling. By broadly evaluating performance, the range of applicability of the concept should be demonstrated. Rigorous analysis of various contact angles (e.g., oil/air/solid, water/air/solid, and water/oil/solid) will be used to explain results. This is a resubmittal of a previous request strengthened by revisions recommended by peer reviews.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government