Turbomachinery Vibration Analysis with a New Parallel Time Decomposition Scheme

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$599,760.00
Award Year:
1995
Program:
SBIR
Phase:
Phase II
Contract:
n/a
Agency Tracking Number:
22550
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
Continuum Dynamics, Inc.
P.O. Box 3073, Princeton, NJ, 08543
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
Alexander H. Boschitsch
(609) 734-9282
Business Contact:
() -
Research Institution:
n/a
Abstract
Current time-marching methods for assessing periodic blade loads consume inordinate computational time, greatly restricting analysis and design based on such approaches. This study seeks to redress this drawback by implementing a novel time-domain decomposition algorithm on a parallel computer. This parallel scheme will achieve orders of magnitude reduction in computation times while making full use of existing sequential algorithms for simulating periodic systems on parallel computers. Perfect load balance will be accomplished and inter-processor communication minimized using the proposed scheme. Though the parallel algorithm is applicable to any time-periodic system this effort will focus upon the rotor-stator interaction problem using an existing highly accurate aeroelastic analysis. By basing the analysis on a validated fluid-structure interaction code, another drawback of existing rotor-stator codes namely the absence of a true aeroelastic capability will be repaired. In Phase I, validation exercises will be conducted on a parallel machine in order to assess the coding effort entailed in adapting an existing serial code to parallel computation and CPU gains over serial methods using the proposed technique. In Phase II. the technique will be extended to full 3D viscous aeroelastic turbomachinery rotor-stator computations on a parallel machine.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government