High Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$69,826.00
Award Year:
2005
Program:
SBIR
Phase:
Phase I
Contract:
NNC05CA29C
Award Id:
72683
Agency Tracking Number:
040779
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
34 Lexington Avenue, Ewing, NJ, 08618
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
096857313
Principal Investigator:
Todd Quackenbush
(609) 538-0444
todd@continuum-dynamics.com
Business Contact:
Barbara Agans
Business Official
(609) 538-0444
barbara@continuum-dynamics.com
Research Institution:
n/a
Abstract
Noise mitigation for subsonic transports is a continuing high priority, and recent work has identified successful exhaust mixing enhancement devices that have demonstrated substantial capability for reducing aircraft engine noise in critical takeoff and landing conditions. Existing fixed-geometry versions of such devices, however, are inherently limited to optimal noise mitigation in a single operating condition and also can impose significant performance penalties in cruise flight. An adaptive geometry device using smart structures technology offers the possibility of maximizing engine performance while retaining and possibly enhancing the favorable noise characteristics of current designs. The proposed Phase I effort will demonstrate the feasibility of this concept, focusing on design and demonstration of variable geometry chevrons using rapidly maturing Shape Memory Alloy (SMA) actuation technology. This work represents an extension of prior successful development of solid state smart structures, though it will exploit new high temperature SMA (HTSMA) materials technology to enable the devices to operate in both low temperature (fan) and high temperature (core) exhaust flows. While important in its own right, this development also holds the promise of being the first step in development of a range of smart materials devices for a spectrum of aeropropulsion applications.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government