Physics Based Tool for Rotorcraft Computational Aeroacoustics

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX09CF15P
Agency Tracking Number: 084549
Amount: $99,994.00
Phase: Phase I
Program: SBIR
Awards Year: 2009
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
Continuum Dynamics, Inc.
34 Lexington Avenue, Ewing, NJ, 08618
DUNS: 096857313
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Glen Whitehouse
 Principal Investigator
 (609) 538-0444
 glen@continuum-dynamics.com
Business Contact
 Barbara Agans
Title: Business Official
Phone: (609) 538-0444
Email: barbara@continuum-dynamics.com
Research Institution
N/A
Abstract
Reduction of noise is critical to the public acceptance and mission suitability of rotorcraft. Accurate prediction of rotorcraft noise is directly related to the ability to predict the highly complicated interaction between the aerodynamic surfaces and their wakes, and while current numerical tools can, in principle, model the complete rotorcraft, they are severely hampered by modeling assumptions or numerical formulation. Consequently, commonly used tools fail to adequately predict the load distribution, and hence noise, of arbitrarily shaped rotors and fuselages. The proposed effort directly supports NASA's mission of assisting the development of advanced rotorcraft by developing an innovative physics-based multidisciplinary tool for predicting rotorcraft aeroacoustics. This tool, consisting of a fully coupled FUN3D CFD code, VorTran-M module and acoustic propagation model, will be able to address interactional aeroacoustics problems unique to rotorcraft, capturing rotor-fuselage interactions that lead to both structural vibration and undesirable interactional acoustics. This effort will build upon recent work addressing critical issues such as numerical diffusion, grid generation, turbulence modeling and rotorcraft noise prediction and reduction at CDI, GIT and elsewhere. The hybrid code will achieve TRL=4 during Phase I and TRL=7-8 by the end of Phase II.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government