Reduced Parasitic Lasing in Ti:Sapphire Lasers: Removing a Bottleneck to New Ways of Acceleration

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$749,923.00
Award Year:
2008
Program:
SBIR
Phase:
Phase II
Contract:
DE-FG02-07ER84820
Agency Tracking Number:
82799
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
Crystal Systems, Inc.
27 Congress Street, Salem, MA, 01970
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
062191275
Principal Investigator:
David Joyce
Dr
(978) 745-0088
djoyce@crystalsystems.com
Business Contact:
Leila Panzner
Ms
(978) 745-0088
leila@crystalsystems.com
Research Institution:
n/a
Abstract
New, ultra-fast, ultra-intense solid state lasers can be efficient sources of accelerated particle beams in applications ranging from high energy physics research to real world medical applications. Parasitic lasing represents a severe bottleneck to scaling up this new technology. Removing this bottleneck will open up a range of applications of these compact lasers, efficiently bringing accelerator technology to a real world problems. Parasitic lasing is being reduced by a series of growth and post-growth treatments, to ultimately allow production of large Ti:sapphire crystals without parasitic lasing for laser applications. Commercial Applications and other Benefits as described by the awardee: During the Phase I, treatments of laser crystals were developed to form layers that would stop parasitic lasing. One of these treatments was applied to a large, high-power laser crystals and this crystal was successfully used in a real high power system at Lawrence Berkeley National Laboratory. Better ways to limit parasitic lasing were developed with smaller scale rods. The techniques evaluated in Phase I will be developed further and scaled up in Phase II. After the treatments are optimized, they will again be applied to a large-scale real laser rod, and tested in a high power system for reduced parasitic lasing, and thus higher output power.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government