SBIR Phase I:Advanced Irregularity Prediction System (AIPS) to identify Accounting Errors and Financial Fraud in Small & Medium Businesses

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1013413
Agency Tracking Number: 1013413
Amount: $180,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: IC
Solicitation Number: NSF 09-609
Small Business Information
3495 Piedmont Road, Eleven Piedmont CenterAtlanta, GA, 30305
DUNS: 782318914
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: Y
Principal Investigator
 Clarence Morey
 (678) 779-3222
Business Contact
 Clarence Morey
Title: DVM
Phone: (678) 779-3222
Research Institution
This Small Business Innovation Research (SBIR) Phase I project aims to assess the feasibility of using statistical methods such as Hierarchical Clustering and Binary Classification to predict accounting errors and financial fraud amongst small and medium businesses (SMBs). Checks and balances in place to protect larger businesses from accounting errors and financial fraud are too complex, time consuming, and costly for SMBs. As a result, small and medium businesses suffer greater losses from accounting errors and financial fraud than any other sized businesses. Advanced data mining and analysis techniques may offer a simple and cost effective solution to the problem. The proposed research includes data collection and statistical assessment to predict accounting errors and fraud in financial systems. While the techniques proposed have been successfully used in fields such as information security to determine threats and prevent risks (e.g. intrusion prevention, anti-virus, anti-spyware, web content filtering), they have not been applied nor tested to transactional accounting data sets. Fraud is a serious problem. The Association of Certified Fraud Examiners (ACFE) estimates that organizations lose 7% of their revenues to fraud. Applied to the projected 2008 U.S. GDP, this 7% equals approximately $994 billion in fraud losses. Assuming an average corporate tax rate of 40%, results in uncollected tax revenue of nearly $398 billion. The "clean up" costs related to errors and fraud are also significant. Forensic audits can easily exceed $100,000. In many cases, businesses affected by fraud are forced to layoff employees, stop payments to suppliers, decrease quality levels, or reduce other vital spending in hope of recouping losses. In the worst cases, companies may even be forced to close. According to the ACFE, nearly half of all fraud in the U.S. occurs in businesses with less than 100 employees. The ability to detect errors and fraud using predictive techniques could provide benefit to the millions of small businesses fueling the U.S. economy.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government