You are here
Chemical Kinetic Pathway Effects in Turbulent Reacting Flows
Phone: (386) 226-7953
Email: martis38@erau.edu
Phone: (303) 881-7992
Email: tleeson@rxnsys.com
Contact: Scott Martin
Address:
Phone: (386) 226-7953
Type: Nonprofit College or University
The Army is very interested in accurate simulations of combustion in devices such as rockets and gas turbines, Otto and Diesel cycle IC engines, scramjet engines, rotating detonation engines, etc.The performance of weapons systems using these devices directly affect casualty/loss rates and the ability to win wars as well as procurement decisions and program costs. Accurate and computationally-affordable chemically reacting Computational Fluid Dynamics (CFD) is needed to design new, smaller, lighter, more efficient and less costly combustion systems and assess their operability before encountering costly problems.Unfortunately, accurate modeling of turbulent combustion generally requires sophisticated and computationally expensive kinetic mechanisms and turbulence models to capture important turbulence-chemistry interactions.Happily, there is a new, efficient turbulent combustion modeling approach that can not only accurately capture the effect of turbulence on combustion heat release, but is also insensitive to the size of the chemical kinetic mechanism employed.This combustion model holds great promise in not only improving reacting flow simulation efficiency and accuracy, but also helping us understand the nature of the turbulence-chemistry interaction.Success in this effort will allow this approach to be used on a wide variety of turbulent combustion problems and is expected to be commercially valuable.
* Information listed above is at the time of submission. *