A High-Performance Quiet Head Gradient Coil for High-field MRI

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43EB008291-01
Agency Tracking Number: EB008291
Amount: $199,384.00
Phase: Phase I
Program: SBIR
Awards Year: 2008
Solicitation Year: 2008
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Small Business Information
DUNS: 045600368
HUBZone Owned: Y
Woman Owned: Y
Socially and Economically Disadvantaged: Y
Principal Investigator
 (803) 788-6497
Business Contact
Phone: (803) 788-6497
Email: dave@dotynmr.com
Research Institution
DESCRIPTION (provided by applicant): Compared to current practice with whole-body-gradient coils, an advanced head gradient coil promises over twice the gradient strength (for higher resolution) and at least three times higher slew rates (for faster imagi ng sequences), with an order of magnitude reduction in nerve stimulation and greatly reduced acoustic noise. The potential usefulness of a high-performance head gradient coil has been widely recognized for more than a decade, and many groups around the wor ld have each put millions of dollars into attempting to developing a satisfactory solution, but to limited avail. The enormous increases in S/N in head MR RF coils reported over the past year serve to further strengthen the justification for a high-perform ance dedicated head gradient coil. Preliminary simulations indicate that an optimal combination of a number of improvements in our pre- vious crescent-coil approach will permit the realization of a practical, robust, head gradient coil with dramatically re duced acoustic noise, higher gradient strength, and substantially reduced manufacturing cost. The higher gradient performance is especially needed at higher fields for improved brain functional imaging (fMRI). The primary justification in clinical applicat ions may be the improved S/N that will be obtained in Diffusion Weighted MRI techniques. Next-generation ultra-fast hyperpolarized 13C techniques will also benefit. Moreover, a dedicated head MR scanner would be less expensive than a whole body scanner whi le providing greatly improved performance for head and extremity applications in patients of all ages, and for whole-body imaging of infants. Such a system could supplant x-ray CT in more cases. Based on preliminary simulations, the following performance i s expected: 200 mT/m gradient at 900 A; slew rate of 520 T/m/s at 1400 V; 25 cm Region of Uniformity imaging diameter with 10% rms non-uniformity; residual eddy current effects under 0.4%; acoustic noise below 100 dB for a typical EPI brain sequence in a 3 T field; and mechanical robustness suitable for operation with no current de-rating at fields at least up to 8 T. The RT shims will provide major corrections through Z4, including dynamic Z0 and Z2. The Phase I will complete detailed simulations and balan ced optimization of all parameters. A prototype coil will be constructed, and preliminary tests will be completed. More extensive testing will be carried out during Phase II at another institution, followed by revisions based on lessons learned and constru ction and testing of the pre-production version.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government