A High-Performance Quiet Head Gradient Coil for High-field MRI

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$199,384.00
Award Year:
2008
Program:
SBIR
Phase:
Phase I
Contract:
1R43EB008291-01
Award Id:
89097
Agency Tracking Number:
EB008291
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
DOTY SCIENTIFIC, INC., 700 CLEMSON RD, COLUMBIA, SC, 29229
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
045600368
Principal Investigator:
FRANCISDOTY
(803) 788-6497
DAVID@DOTYNMR.COM
Business Contact:
() -
dave@dotynmr.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): Compared to current practice with whole-body-gradient coils, an advanced head gradient coil promises over twice the gradient strength (for higher resolution) and at least three times higher slew rates (for faster imagi ng sequences), with an order of magnitude reduction in nerve stimulation and greatly reduced acoustic noise. The potential usefulness of a high-performance head gradient coil has been widely recognized for more than a decade, and many groups around the wor ld have each put millions of dollars into attempting to developing a satisfactory solution, but to limited avail. The enormous increases in S/N in head MR RF coils reported over the past year serve to further strengthen the justification for a high-perform ance dedicated head gradient coil. Preliminary simulations indicate that an optimal combination of a number of improvements in our pre- vious crescent-coil approach will permit the realization of a practical, robust, head gradient coil with dramatically re duced acoustic noise, higher gradient strength, and substantially reduced manufacturing cost. The higher gradient performance is especially needed at higher fields for improved brain functional imaging (fMRI). The primary justification in clinical applicat ions may be the improved S/N that will be obtained in Diffusion Weighted MRI techniques. Next-generation ultra-fast hyperpolarized 13C techniques will also benefit. Moreover, a dedicated head MR scanner would be less expensive than a whole body scanner whi le providing greatly improved performance for head and extremity applications in patients of all ages, and for whole-body imaging of infants. Such a system could supplant x-ray CT in more cases. Based on preliminary simulations, the following performance i s expected: 200 mT/m gradient at 900 A; slew rate of 520 T/m/s at 1400 V; 25 cm Region of Uniformity imaging diameter with 10% rms non-uniformity; residual eddy current effects under 0.4%; acoustic noise below 100 dB for a typical EPI brain sequence in a 3 T field; and mechanical robustness suitable for operation with no current de-rating at fields at least up to 8 T. The RT shims will provide major corrections through Z4, including dynamic Z0 and Z2. The Phase I will complete detailed simulations and balan ced optimization of all parameters. A prototype coil will be constructed, and preliminary tests will be completed. More extensive testing will be carried out during Phase II at another institution, followed by revisions based on lessons learned and constru ction and testing of the pre-production version.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government