Beatwave Photoinjector as THz Source

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$750,000.00
Award Year:
2008
Program:
SBIR
Phase:
Phase II
Contract:
DE-FG02-07ER84877
Award Id:
84088
Agency Tracking Number:
82648
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
1912 MacArthur Street, Rancho Palos Verdes, CA, 90275
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
175302165
Principal Investigator:
Alexei Smirnov
Dr
(310) 548-7123
davidyu@pacbell.net
Business Contact:
David Yu
Dr
(310) 548-7123
davidyu@pacbell.net
Research Institution:
n/a
Abstract
Attaining high peak fields at terahertz (THz) frequencies is among the highest priorities among the common R&D goals of the DOE-NSF-NIH triad. However, THz science and technology have been underdeveloped because of the unavailability of effective and affordable THz sources. The few THz facilities currently available are based on free electron lasers (FELs), which are too bulky, expensive, and inefficient to serve as commercial sources. This project will design, build, and test a compact, pulsed THz source ¿ a Cherenkov radiator comprising a capillary dielectric tube driven by an over-focused electron beam from a low-energy laser-driven photoinjector ¿ that can deliver at least 100 kW peak power. The photoelectrons are produced from a metal cathode illuminated with a sub-picosecond laser. In Phase I, feasibility was demonstrated for the transport of an over-focused, low-loss, electron beam of 0.15 MA/cm2 of peak current density and a few MeV of energy. Microjoule levels of radiated THz energy were produced using a pulsed DC or RF gun and a capillary tube. In Phase II, the development of the THz source will be completed. An in-vacuum THz radiator will be designed and fabricated as an inset for a conventional photoinjector, complemented by laser multiplexing and a THz radiation detector unit. Then, experiments will be conducted to demonstrate (1) beam alignment and transport of an over-focused, high-density electron beam; and (2) the measurement of THz radiation in single-bunch and multi-picosecond, microbunch modes. Commercial Applications and Other Benefits as described by the awardee: The terahertz radiator unit should find application for various types of photoelectron guns, including DC, RF, and DC-RF photoinjectors. The compact THz source should be a powerful tool for myriad applications in physics, material science, chemistry, imaging, spectroscopy, biology, medicine, environmental monitoring, homeland security, defense, and communications.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government