ShuntCheck Clinical Validation and ShuntCheck-Micro-Pumper Assessment of CSF Shun

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$699,992.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
1R43HD065429-01
Award Id:
96264
Agency Tracking Number:
HD065429
Solicitation Year:
n/a
Solicitation Topic Code:
NICHD
Solicitation Number:
n/a
Small Business Information
3333 Street Road, SUITE 210, Bensalem, PA, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
828682240
Principal Investigator:
MAREK SWOBODA
(215) 645-1280
MSWOBODA@NEURODX.COM
Business Contact:
FREDERICK FRITX
() -
ffritz@neurodx.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): The goal of this SBIR is to create the first comprehensive set of clinical tools and noninvasive methods for diagnosing cerebrospinal fluid (CSF) shunt obstruction and to validate them to convince clinicians of thei r clinical value. Hydrocephalus is a common condition in which CSF accumulates in the brain ventricles, potentially leading to brain damage and death. It is corrected by placing a VP shunt that carries excess CSF away. Although enormously successful, shunt s eventually fail, usually by obstruction. However, the clinical symptoms of shunt obstruction, primarily including headache and nausea, are non-specific, making shunt failure challenging to diagnose. Suspected obstruction is typically investigated using s tatic MRI and CT scans which are expensive, and require evidence of fluid accumulation in serial images, precluding prediction of shunt failure. Exposure to radiation is also significant in shunted children, who may require several shunt investigations ann ually. Radionuclide studies, which provide dynamic measures of shunt CSF flow, are invasive and carry the risk of infection. They also have reduced diagnostic specificity due to intermittent shunt flow - patent shunts do not flow continuously leading to a high level of false positive readings. A new, non- invasive test for shunt flow, ShuntCheck, also suffers from reduced specificity due to intermittent shunt flow, leading to questions about the device's accuracy. There are currently no tools for differenti ating between intermittently flowing patent shunts and occluded shunts. NeuroDx Development (NeuroDx) has recently developed and bench tested Micro-Pumper , a small device which is held against the shunt valve during the ShuntCheck test. The device provid es specific vibration pulses to the valve, creating a controlled level of CSF flow through the valve. We have shown that the Micro-Pumper, used in combination with ShuntCheck can differentiate between non-flowing patent shunts and occluded or partially occ luded shunts. The goal of this Phase 1 project is to validate the accuracy of the ShuntCheck flow/no-flow determination via comparison to MRI flow testing and to test the Micro-Pumper/ShuntCheck combination in a pilot study or pediatric hydrocephalus patie nts at Children's Hospital Boston. By the end of Phase 2, we anticipate having accumulated sufficient data to enable submission of a pre-market notification (510(k)) to the FDA for the Micro- Pumper (in conjunction with ShuntCheck). The result of this work will be an important change in the diagnostic algorithm currently used to manage hydrocephalus patients. Given the need for a non-invasive method to accurately diagnose shunt failure, the potential savings over alternative methods and the potential for im proved patient outcomes, the data from this study will support a diagnostic procedure which is commercially viable and extremely important. PUBLIC HEALTH RELEVANCE: This proposal addresses the need for diagnostic tools for use in a hospital or o utpatient setting that work in real-time to quantitatively determine shunt function by creating the first comprehensive set of clinical tools and noninvasive methods for diagnosing cerebrospinal fluid (CSF) shunt obstruction and validating them to convince clinicians of the valuable information available from ShuntCheck(R) (SC) and Micro-Pumper. Obstruction of CSF shunts, a common complication, is currently diagnosed by radiation imaging techniques, such as CT Scan, or by invasive procedures, such as shunt tapping. These new tools will enable shunt obstruction to be diagnosed and will provide a research tool for understanding shunt function.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government