Subcellular imaging of biochemical processes within human retina

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$188,126.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
1R43EY020715-01
Award Id:
96155
Agency Tracking Number:
EY020715
Solicitation Year:
n/a
Solicitation Topic Code:
NEI
Solicitation Number:
n/a
Small Business Information
POLGENIX, INC., 11000 CEDAR AVE, STE 260, CLEVELAND, OH, 44106
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
785024089
Principal Investigator:
GRAZYNA PALCZEWSKA
(440) 319-7616
GPALCZEWSKA@POLGENIXINC.COM
Business Contact:
VIDA TRIPODO
() -
vtripodo@polgenixinc.com
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): Our long-term goal is to develop a clinical instrument, the 2-photon ophthalmoscope, for non-invasive, high-resolution and repetitive imaging of biochemical processes within the human retina. Such an instrument will ha ve tremendous potential for early detection of age and disease related changes in the eye, long before pathological manifestations of retinal disease become obvious. This real-time retinal imaging instrument will also be critical for rapid evaluation of va rious pharmacological agents used to treat retinal pathologies. The method has the great advantage of imaging endogenous retinoid fluorophores in their native state without the need for additional staining. In Phase I, we seek to answer whether two-photon excitation based imaging can track age related changes in the retina and then whether a 2-photon ophthalmoscope, with the ultimate goal of clinical instrument can be made. We are proposing three specific aims: (1) Determine whether two-photon excitation im aging can be used to monitor age related changes in human retina; (2) Image the eye of a living monkey to determine the feasibility of two-photon adaptive optics ophthalmoscope system for non-invasive, in vivo imaging of human retinal pigment epithelium ce lls; and (3) Determine if the size and cost of the instrument could be reduced by replacing the Ti:Sapphire modelocked laser with a femtosecond fiber laser to validate commercialization plans. Once these aims are fulfilled, in Phase 2 we will use the deriv ed data to adapt the two-photon adaptive optics ophthalmoscope for imaging human eyes in vivo and characterize two-photon fluorescence in eyes affected by retina diseases. In addition, the use of the fiber laser and micro-electro- mechanical systems deform able mirror technology, in adaptive optics design, promises to reduce the cost and allow the physical footprint of the instrument to be kept small, greatly aiding potential commercialization. PUBLIC HEALTH RELEVANCE: We seek to develop a novel instr ument for noninvasive imaging of the back of the eye with sub-cellular resolution. The instrument will visualize the age or disease related changes in the biochemical processes within human retina, specifically retinoid cycle. Our goal is to further unders tanding of the biochemistry of vision to allow for rapid evaluation of various pharmacological interventions to prevent retinal degeneration and other pathologies at the early stages, before the retina degenerates and vision is irreparably damaged.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government