You are here

Combinatorial Discovery of Heterogeneous Catalysts Utilizing Emission Spectroscopy and Advanced Machine Learning

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-SC0018887
Agency Tracking Number: 237285
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: 06a
Solicitation Number: DE-FOA-0001771
Solicitation Year: 2018
Award Year: 2018
Award Start Date (Proposal Award Date): 2018-07-02
Award End Date (Contract End Date): 2019-04-01
Small Business Information
11900 Parklawn Dr. Suite 203
Rockville, MD 20852-2669
United States
DUNS: 826528809
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Christopher Metting
 (240) 223-5400
Business Contact
 George Atanasoff
Phone: (240) 223-5400
Research Institution

In this SBIR Phase I project, AccuStrata, Inc. will work with researchers at the University of South Carolina to create a high-throughput flame spray pyrolysis (FSP) system for the rapid, combinatorial discovery and optimization of heterogeneous catalysts. The proposed system will comprise three key features: (1) Optimization and operation of the high-throughput FSP system that is uniquely capable of creating Pd-CeO2-MnOx solid solution catalysts; (2) Integration of an in-situ laser induced breakdown spectroscopy system capable of monitoring the particle synthesis in real time; and (3) Development of an advanced machine learning algorithm that will utilize process parameters (flow rates, burner geometry, temperatures, precursor concentrations, etc.), in-situ laser induced breakdown spectroscopy measurements and post-synthesis characterization datato discover critical signatures within the emission spectra that can help narrow material search space and speed up materials discovery. The proposed system will integrate these features to provide a holistic, commercialize solution for combinatorial discovery of heterogeneous catalysts. A system with these unique capabilities will be of great interest to laboratories both at the university and industry levels. The SBIR proposal team will validate the approach by developing stable solid solution catalysts for natural gas combustion engines. Flame spray pyrolysis can be used to create catalysts from a wide array of materials. In addition, nanoparticle synthesis through FSP allows for precise control over crystallite size, crystalline phase, degree of aggregation and agglomeration, surface area and porosity, which makes it an ideal technique for heterogeneous catalysis discovery. While the technique provides incredible flexibility, complete characterization of the nanoparticles quality post-synthesis is often a slow process that hinders the discovery process. Laser induced breakdown spectroscopy is a processing in-situ technology for monitoring FSP but is an especially difficult characterization method due to the various emission lines originating from the fuel, precursors and by-products. The challenge of correlating the emission spectra to nanoparticle properties may be resolved using advance machine learning algorithms that can correlate the spectral response to the resulting nanoparticle properties as well as the processing parameters. Once the algorithm is trained, it can be used with real-time emission data as a prescreening so that only the most “promising” candidates (as determined by the algorithm) will be flagged for further study. The goal of this SBIR phase I work will be to provide a proof-of-concept for the metrology and algorithms approach. Once the teams have validated the approach, a completely integrated system will be developed and commercialized in a subsequent phase II.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government