Structural Composites with Intrinsic Multifunctionality

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$599,998.00
Award Year:
2005
Program:
SBIR
Phase:
Phase II
Contract:
NNL05AA14C
Award Id:
68938
Agency Tracking Number:
034090
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
111 Downey Street, Norwood, MA, 02062
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
076603836
Principal Investigator:
Michael Gilbert
(781) 769-9450
gilbert@eiclabs.com
Business Contact:
David Rauh
Business Official
(781) 769-9450
drauh@eiclabs.com
Research Institute:
n/a
Abstract
Development of multifunctional, structural materials for applications in terrestrial and space-based platforms is proposed. The principle innovation is the development of an epoxy-based thermoset that undergoes a phase separation reaction during cure to form interpenetrating networks (IPN) of a structural thermoset (epoxy) phase and a second phase that is tailored to provide ancillary function. Both phases are co-continuous and nano-structured, having typical dimensions of 40-200nm. The second phase has controllable viscoelastic properties to provide mechanical damping and other strain-rate dependent behavior. Additional functionality is obtained by sequestering appropriate materials into the second phase. Examples include ionizable salts to provide ionic conductivity, reducible and oxidizable materials for power source applications and reactive species for composite self-repair. In the phase I, the IPN epoxy was used as a matrix for graphite fiber reinforced composites. Within this matrix material, a novel mechanism for vibration damping was revealed and reactive oligomers for self-repair were successfully incorporated without loss of reactivity. Internal electrochemical reactions, which can be used for electrical power generation and myriad other applications, were demonstrated. In the phase II, high performance IPN epoxies, capable of extended service at 150??C and above will be developed and optimized for vibration damping and self-repair functionality.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government