STTR Phase I: Fabrication of Blue/UV Lasers and Laser Systems

Award Information
National Science Foundation
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
710 Asp Avenue, Suite 500, Norman, OK, 73069
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
Chad Roller
(405) 307-8803
Business Contact:
G. Carl Gibson
(405) 307-8807
Research Institution:
Univ. of OK
Mark B Yeary
Univ. of OK
Norman, OK, 73019
(405) 325-8131
Nonprofit college or university
This Small Business Technology Transfer (STTR) Phase I research project proposes to develop new methods for blue/UV laser fabrication. These new devices will have the competitive advantages of higher emission intensities, higher reliability, and ability to extend emission into the deep UV spectral range. Fabricated devices will consist of cleaved AlGaN epitaxial layer structures on the tips of copper bars. Such semiconductor material packaging will significantly improve heat dissipation from large band gap AlGaN semiconductor active region materials. Enhanced active region heat dissipation will allow operation with much higher injection currents and correspondingly higher light output. Research will focus on adapting a metallization, bonding, and cleaving technique originally developed at the University of Oklahoma for mid-IR laser fabrication using IVVI semiconductor epitaxial layer materials. The project will also focus on developing a low cost electronics system capable of measuring short fluorescence lifetimes. Work on the electronics portion of this project will be devoted to the design of a small circuit board populated with a low cost digital signal processor and related components. Firmware will also be written to perform a coherent under-sampling measurement algorithm that will enable accurate measurement of photodetector decay transients of 1 nanosecond or less. Advances in fabricating improved blue/UV light emitters and low cost electronics for fast photodetector signal measurements will enable development of improved chemical and biological (CB) sensors. An important outcome will be compact and low power consumption deep UV light sources; devices that will enhance the capabilities of CB sensors based on fluorescence and Raman scattering detection principles. A handheld CB sensor for distinguishing between a harmless inorganic material and a potentially harmful pathogenic biological material is just one example of a product that can be developed as a result of this project. In addition, improved blue and UV emitters can also be used for optical data storage and solid state lighting.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government