High-Yield Process for Selectively Converting CO2 to Aromatics and Olefins

Award Information
Agency:
National Aeronautics and Space Administration
Branch:
N/A
Amount:
$69,999.00
Award Year:
2005
Program:
SBIR
Phase:
Phase I
Contract:
NNJ05JB89C
Agency Tracking Number:
040473
Solicitation Year:
2004
Solicitation Topic Code:
X1.03
Solicitation Number:
N/A
Small Business Information
Eltron Research Inc
4600 Nautilus Court South, Boulder, CO, 80301-3241
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
Y
Duns:
029303690
Principal Investigator
 James White
 Principal Investigator
 (303) 530-0263
 eltron@eltronresearch.com
Business Contact
 Eileen Sammells
Title: Vice President Administration
Phone: (303) 530-0263
Email: esammells@eltronresearch.com
Research Institution
N/A
Abstract
This proposed Phase I addresses the selective conversion of CO2 to hydrocarbons via integrated CO2-to-methanol, methanol-to-olefins, and olefins-to-aromatics processes. Existing pathways to olefins and aromatics via methane exhibit low per-pass conversion. Fischer-Tropsch synthesis can provide much higher conversion, but into a broad spectrum of products. In contrast, it is possible to achieve high conversion and selectivity to specific olefins and aromatics via the proposed methanol pathway, with minimal net hydrogen consumption. Interest stems from in situ resources utilization (ISRU) of planetary (e.g., Martian) resources to reduce mission weight and cost with enhanced safety. Olefins and aromatics are attractive target species because of their high hydrogen leverage as well as their potential utility as fuels and feedstocks for polymers or other chemicals. Phase I will consist of the following: 1) identify, prepare, and characterize the best potential catalysts for principal process stages; 2) test catalysts under representative conditions; 3) identify the best route for converting CO2 to olefins and aromatics; and 4) estimate potential performance of an integrated system. During Phase II each process stage will be optimized, the stages integrated, and a working breadboard system designed and fabricated.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government