You are here

Low-Loss Millimeter-Wave Isolators for Cryogenic Systems

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: 80NSSC18P2018
Agency Tracking Number: 185363
Amount: $124,699.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: S1
Solicitation Number: SBIR_18_P1
Timeline
Solicitation Year: 2018
Award Year: 2018
Award Start Date (Proposal Award Date): 2018-07-27
Award End Date (Contract End Date): 2019-02-15
Small Business Information
20 South Roanoke Street, Suite 202
Fincastle, VA 24090-3102
United States
DUNS: 034119968
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 David Porterfield
 (434) 409-4044
 david@mhc1.com
Business Contact
 David Porterfield
Phone: (434) 409-4044
Email: david48@mhc1.com
Research Institution
N/A
Abstract

Ferrite based isolators are useful for controlling standing waves in a wide variety of millimeter-wave (MMW), and terahertz (THz) systems. A good example of their usefulness is found in high frequency local oscillator systems. These systems typically comprise a lower frequency oscillator driving a cascade of frequency multipliers. Standing waves arise due to impedance mismatches between the highly tuned components. This in turn gives rise to dips or even nulls in the output of the multiplier chain. The standing waves are often mitigated with complicated impedance matching techniques that are implemented on a case-by-case basis at a great cost in time and money. By using suitable isolators, the standing waves could be suppressed at a fraction of the time and cost.The high insertion loss of these components renders them unsuitable for use in most MMW systems. The typical insertion loss of a WR-6.5 isolator (110-170 GHz) is more than 3 dB. The problem is worse at higher bands. Micro Harmonics Corporation has recently developed a revolutionary new line of isolators with significantly reduced insertion loss. Our WR-8 and WR-6.5 isolators have a measured insertion loss of less than 1 dB over most of the waveguide band. By April of this year, a full line of low-loss isolators covering bands from WR-12 (60-90 GHz) through WR-3.4 (220-325 GHz) will be available. Many NASA instruments are designed for use at cryogenic temperatures. However, cryogenically rated isolators are currently unavailable at frequencies above 40 GHz. Isolators designed for room temperature operation have poor isolation at cryogenic temperatures due to changes in the ferrite properties. The isolators must be fundamentally redesigned for cryogenic use. We propose to develop high-frequency isolators optimized for cryogenic temperatures that exhibit significantly reduced loss and improved isolation and bandwidth making them useful for many of the instruments now being developed for NASA missions.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government