You are here

Low cost and high performance MEMS-VCSEL technology for next generation swept source optical coherence tomography and microscopy

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R44CA235904-01
Agency Tracking Number: R44CA235904
Amount: $225,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: 102
Solicitation Number: PA18-574
Timeline
Solicitation Year: 2018
Award Year: 2018
Award Start Date (Proposal Award Date): 2018-09-17
Award End Date (Contract End Date): 2020-02-29
Small Business Information
5385 HOLLISTER AVE STE 211
Santa Barbara, CA 93111-2392
United States
DUNS: 132398913
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 VIJAYSEKHAR JAYARAMAN
 (805) 685-9429
 praevium@aol.com
Business Contact
 VIJAYSEKHAR JAYARAMAN
Phone: (805) 448-4008
Email: vijay@praevium.com
Research Institution
N/A
Abstract

ThisproposalaimstodevelopanewgenerationofhighspeedlowcostmicroelectromechanicalsystemsverticalcavitysurfaceemittinglasersMEMSVCSELsforopticalcoherencetomographyOCTatmultiMHzaxial scanratesTheproposedeffortinvolvesacollaborationbetweenPraeviumResearchwithexpertiseinMEMSVCSELdevelopmentandtheMassachusettsInstituteofTechnologyMITaleaderinOCTsystemintegrationandOCTimagingTheseultrahighspeedimagingsystemsenablenewinvivofundamentalandclinicalimagingapplicationsatlargerfieldsofviewandfinerresolutionsthanwerepreviouslypossibleMultiMHzoperationisparticularlycriticalforadvancingOCTincancerstudieswhichrequirehighspeedforlargevolume imaging of microstructureand dense sampling for angiographic imagingOCTAand optical coherencemicroscopyOCMThe proposed lowcost laser will make these high performance technologies widely availableto the fundamental and clinical cancer research communitiesPraevium Research will focus on the development of the new highspeedlowcost MEMSVCSEL swept lasersourceMEMSVCSELshaverecentlyemergedasanearideallaserforOCTThesedevicesofferauniquecombinationofwidetuningrangehighandvariabletuningspeeddynamicsinglemodeoperationenablingmeterscaleimagingrangeandthepotentialforlowcostenabledbymonolithicwaferscalefabricationandtestingThe proposed work seeks to push MEMSVCSEL technology toMHz axial scan rates in a monolithicdesignwith multiple approaches to actuator design and packaging to optimize laser speedstuning rangeandsweeplinearityTheseeffortswillsignificantlyreducemanufacturingcostprovidingthefirstvolumescalablecommercially available swept source for multiMHz OCTto enable axx speed improvement over existingcommercial OCT instruments at a fraction of the cost of current swept source technologiesMITwillintegratethenewlightsourcewithstateoftheartdataacquisitionandprocessingandwithnewendoscopic probe technology to demonstrate in vivo imaging in patients with gastrointestinal pathologiesNewultrahigh speed OCT system designs involving laser sweep multiplexing and linearizationand low latency OCTprocessinganddisplaywillbeinvestigatedforperformanceandfeasibilityMicromotorprobestetheredcapsulesand piezoelectric scanners will be developed for compact and highprecision optical imagingMIT willdemonstrateendoscopicapplicationsofthesetechnologiesinpreclinicalstudieswhileinvestigatingsystemparametersanddesignsforoptimizedperformancetoestablishworkflowandimagingprotocolsforpotentialfuture clinical applicationsIn an existing collaboration with the Boston Veterans Affairs Medical CenterMIT willfurtherdemonstratestudiesinpatientswithupperandlowergastrointestinaltractpathologiesassessingcapabilities for wide field coverage of mucosal structure and vasculatureand cellular morphologyThese effortswill motivate development in many other endoscopiclaparoscopicor surgical applicationsThiseffortisexpectedtoimpactpublichealthbyadvancinganewhighperformancelowcostclinicaltoolcapableofthreedimensionalimagingoftissueoverlargevolumeswithhighresolutionforassessmentofpathologywithouttheneedfortissueexcisionusingopticalcoherencetomographyOCTTheproposedtechnology will operate at leastxx faster than the imaging speed of existing commercial OCT instrumentsand is enabled by a new compact wavelength tunable semiconductor laser technology coupled with advancedinstrumentation and endoscopic optical probe technologiesThe high performance enables threedimensionalmicroscopic visualization of tissue structureblood vasculatureand cells in gastrointestinal and other systemswhile the low cost will make these capabilities widely available to the fundamental and clinical cancer researchcommunitieswith many cancer applications in endoscopy and surgery

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government