Detection of Fine Aerosols Using a Novel Aerosol Sampler

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$100,036.00
Award Year:
2009
Program:
SBIR
Phase:
Phase I
Contract:
1R43HL096248-01
Award Id:
93968
Agency Tracking Number:
HL096248
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
ENERTECHNIX, INC., 23616 SE 225th St, PO BOX 469, MAPLE VALLEY, WA, 98038
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
928928803
Principal Investigator:
PETERARIESSOHN
(425) 432-1589
PETER.A@ENERTECHNIX.COM
Business Contact:
PETERARIESSOHN
() -
admin@enertechnix.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): The goal of the proposed research is to develop a personal exposure monitor for indoor and outdoor particulate matter in the ultrafine to 10 micron size range. The proposed device will collect large volumes of ambient a ir in the vicinity of the wearer's breathing zone and provide concentrated, size-classified samples for real-time analysis or for later analysis in a laboratory. This device will combine: (i) a novel aerosol concentrator to increase the particle concentrat ion by up to three orders of magnitude, (ii) an aerodynamic size classifier to sort particles with sizes from 1 to 10 microns, and (iii) an electrostatic precipitator to capture and size classify particles smaller than 1 micron. The proposed monitor will p rovide the ability to couple the particle size classifier to a number of analytical assays (chemical or biological) that can be carried out in parallel. Combined with automated data recording and/or transmitting equipment and a GPS or other position-monito ring device, this monitor will be able to provide time- and space-resolved measurements of exposure to a wide range particulate matter. In the Phase I project-using advanced 3-dimensional, unsteady CFD methods-we will design a prototype of the aerodynamic particle size classifier, perform proof-of-concept experiments showing the feasibility of aerodynamic particle classification, and demonstrate nano-particle capture using an electrostatic precipitator. In Phase II we will combine the aerosol sampler/size c lassifier with a detection platform (possibly a microfluidic device) that can be used to carry out a variety of analyses on each size class in parallel. PUBLIC HEALTH RELEVANCE: There is a growing awareness that exposure to complex environmental agents suc h as fine particulate matter can trigger or exacerbate diseases such as asthma and cardiovascular disease, however, there is still much uncertainty about the importance of specific chemical or physical factors and the causal relationship between disease an d exposure. Standard aerosols collection and analysis methods cannot provide real time spatial and temporal resolution and often are often very labor intensive and non-specific. The proposed approach will overcome many of these difficulties by providing a very compact, light-weight, low-cost monitoring package that can be worn by an individual and, coupled to automated data recording and/or transmitting equipment and a GPS or other position-monitoring device, this personal exposure monitor will be able to p rovide time- and space-resolved measurements of a wide range of ambient aerosols.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government