Efficient Regenerating Oxidizer for Destruction of Volatile Organic Compounds

Award Information
Agency: Environmental Protection Agency
Branch: N/A
Contract: 68-D-03-032
Agency Tracking Number: 68-D-03-032
Amount: $70,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2003
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
4500-B Hawkins Street, N.E., Albuquerque, NM, 87109
DUNS: N/A
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Patrick Dhooge
 (505) 345-2707
 pdhooge@etec.nm.com
Business Contact
Phone: () -
Research Institution
N/A
Abstract
To help improve air quality, the U.S. Environmental Protection Agency is seeking innovative and cost-effective new technologies to remove volatile organic compounds (VOCs) from the emissions of stationary sources. The current technologies, carbon adsorbers and catalytic thermal oxidizers, are heavy, expensive, insufficiently regenerating, and sometimes not sufficiently effective to meet regulatory requirements. Nimitz, Inc., doing business as the Environmental Technology & Engineering Center (ETEC), proposes to develop an inexpensive, catalytic solid oxidant system that will continuously and completely oxidize VOCs at near ambient temperature. The new technology will use a novel catalyzed oxidant that will be easily and continuously regenerated at very low cost to provide highly effective, inexpensive, low-maintenance, and highly reliable destruction of VOCs. The Phase I research project will determine the feasibility of the novel catalyzed oxidant by applying it and selected catalysts to substrates, and measuring the oxidation rates of acetone, toluene, and trichloroethylene on the coated substrates. The results of the Phase I project will be used to estimate the size, weight, and cost for emissions treatment to determine commercial feasibility. In Phase II, ETEC will optimize the oxidation chemistry; perform scale-up engineering studies; design, build, and test a prototype treatment system; and hold discussions with potential manufacturers. The results of Phase I, if successful, will demonstrate the feasibility of a new technology for effectively, inexpensively, and reliably destroying VOCs in emissions, and an estimate of the size, weight, and cost of a system using the technology. The results of Phase II, if successful, will be the development of an optimized catalyzed oxidant formula and demonstration of the new technology at prototype scale. The product will be a patented composition for destroying organic compounds in emissions from stationary sources. Applications of the new technology include control of emissions from stationary sources and building air treatment. Potential stationary source users include gasoline marketing operations, printing shops, surface coating shops, and many other manufacturing operations that use or produce VOCs. Potential indoor air treatment users include office buildings, hospitals and other care facilities, homes, and factories. Commercial application of the technology will result in pollution prevention, reduction of adverse health effects from exposure to VOCs, and energy savings. The estimated total market size is approximately $100 million per year.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government