SBIR Phase I:MnO2 as Novel Cathode Catalysts for Power Generation and Wastewater Treatment In Microbial Fuel Cells (MFCs)

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1013813
Agency Tracking Number: 1013813
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: BC
Solicitation Number: NSF 09-609
Small Business Information
146 Hartford Road, Manchester, CT, 06040
DUNS: 045109659
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Craig Calvert
 (860) 646-2469
Business Contact
 Craig Calvert
Title: PhD
Phone: (860) 646-2469
Research Institution
This Small Business Innovation Research Phase I project will focus on the development of a novel MnO2 cathode catalyst for power generation and wastewater treatment in microbial fuel cells (MFCs); an emerging biotechnology for generation of electricity from wastewater treatment facilities. Currently, development of MFCs is impeded by the cathode reaction, which is the rate-limiting step in MFCs. Current cathode material is platinum based, which is costly and relatively scarce. Fouling of the cathode decreases the cathode effectiveness and increases maintenance costs. A MnO2-cathode catalyst will be developed to enhance the cathode reaction rate, reduce costs, and minimize fouling. The catalyst will incorporate metal additives to enhance the reaction, have an anti-fouling coating to minimize fouling, and be prepared as a monolithic material. The developed cathode will be tested in laboratory-scale systems and a continuous-flow pilot-scale MFC system treating actual wastewater from a wastewater treatment plant. The broader/commercial impact of this project will be the removal of a key hurdle that has impeded commercialization of MFCs. A lower cost and more effective catalyst is a key component for bringing MFC technology to a cost that will be commercially attractive to any wastewater treatment facility. The anaerobic MFC has the advantage over an aerobic process due to less power consumption and reduced sludge volume. The initial cost of the MFC and the maintenance would be offset by the reduction of electricity consumed from the power grid. The development of a cost-effective MFC system has the potential for significant impact on energy and environmental sustainability and could eventually lead to for self-sustainable wastewater treatment plant.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government