Crucial Component Damage Detection, Monitoring and Mitigation

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX08CB23P
Agency Tracking Number: 074073
Amount: $99,994.00
Phase: Phase I
Program: SBIR
Awards Year: 2008
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
2525 Arapahoe Avenue, Bldg. E4, #262, Boulder, CO, 80302
DUNS: 112811364
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Dr. Robert Owen
 Principal Investigator
 (303) 530-1248
Business Contact
 Dr. Robert Owen
Title: Principal Scientist
Phone: (303) 530-1248
Research Institution
This SBIR project delivers an on-board structural health-monitoring (SHM) system with embedded sensors that sense mechanical impedance deviations to flag incipient damage in time to recover from or prevent in-flight failures. This Component Damage Mitigation (CDM) system integrates early damage detection with failure recovery measures such as self-healing fasteners. Implications of the innovation Next Generation Air Transport Systems bring increasingly demanding weight and performance needs that encourage aircraft to operate relatively close to their design limitsýýminor structural failure can mean rapid catastrophe. On-board sensing, diagnostic, and damage mitigation capabilities are needed for early correction of incipient damage. However, no practical system exists. We address this deficiency by building on our existing SHM unit and incorporating damage mitigation. Technical objectives CDM leverages our work in impedance-based SHM. Our current prototype consists of a single custom electronics board, and is a TRL 5 unit. We have demonstrated field operation in Boeing launch simulation tests and on full-scale wind turbine blades. We propose to integrate our current approach with damage mitigation measures and to create a practical single-chip solution. We include computer modeling that generates virtual data in our sensor validation. Research description Phase 1 establishes feasibility for a single-chip approach based on the impedance method, and demonstrates damage mitigation on a model self-healing fastener. Phase 2 completes and validates single chip development, integrates damage detection and mitigation, and delivers an operational unit. Anticipated results Phase 1 demonstrates damage detection/mitigation integration and provides a detailed chip roadmap. Phase 2 delivers an operational unit that performs integrated damage detection, monitoring, and mitigation in crucial propulsion system and airframe components.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government