You are here

Whole-organ bioreactor with integrated nondestructive 3D molecular imaging

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 4R44HL138185-02
Agency Tracking Number: R44HL138185
Amount: $1,979,828.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: NHLBI
Solicitation Number: HL15-008
Timeline
Solicitation Year: 2015
Award Year: 2019
Award Start Date (Proposal Award Date): 2019-08-01
Award End Date (Contract End Date): 2021-07-31
Small Business Information
2 DAVIS DR, Durham, NC, 27709-0003
DUNS: 078519223
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 TOMASZ CZERNUSZEWICZ
 (713) 550-0850
 tomekc@sonovol.com
Business Contact
 RYAN GESSNER
Phone: (919) 428-1639
Email: gessner.ryan@gmail.com
Research Institution
N/A
Abstract
Abstract Significance: Donor tissue shortage remains a critical problem in lung transplantation. Recent advances in tissue engineering have allowed for the possibility of generating bioengineered lungs from decellularized organ scaffolds. These scaffolds, created from the donor’s tissue, become functionalized after recellularization with a patient’s own cells. However, translation of whole-lung decell/recell technology to the clinic has been hampered by the lack of sophisticated tissue growth technologies (e.g. bioreactors) that are capable of providing precise feedback and control of the microenvironment within the scaffold. Innovation: One specific feature that all bioreactors currently lack is a way to noninvasively image the developing organs within them, or quantitatively assess the seeding and growth of cells over time. Currently, these parameters can only be evaluated destructively by histology or by rudimentary input/output assays that have no spatial sensitivity. Therefore, we propose a novel bioreactor that will provide a new layer of information and feedback to the user based on 3D contrast-enhanced ultrasound/photoacoustic (USPA) image data. USPA is a new functional imaging modality that utilizes a light source to generate ultrasonic waves throughout a tissue volume. This approach can provide noninvasive high-resolution images of cellular distribution and cellular metabolism in 3D. Team: SonoVol, Inc., a company specializing in 3D robotic ultrasound imaging, will partner with a team of tissue engineer (UMN), photoacoustics (Johns Hopkins), and medical image analysis (Kitware) experts to build a specialized bioreactor with integrated noninvasive molecular imaging feedback. Hypothesis: The USPA enabled bioreactor will improve whole-organ engineering research by providing real time quantitative feedback on cellular distribution and metabolism. This will accelerate the experimental feedback loop as compared to conventional histology, as well as reduce costs. Approach: During Phase I we will demonstrate feasibility within a mouse lung. During Phase II we will scale the system up for use in translational-sized porcine organs, and perform the commercial Randamp;D necessary to deliver our first calibrated and validated systems to customers. Impact: This technology will be the first commercially available bioreactor of its kind, specifically designed for noninvasive molecular imaging and nondestructive assessment of the 3D organ constructs. Initially its commercial impact will be primarily focused at academic research institutions, however as lung bioengineering technologies mature, the technology could eventually serve a critical role in biotech after bioengineered lungs are approved for clinical use.Project Narrative Tissue engineering using 3D scaffolds represents the future of organ transplantation. Unfortunately, bioengineering complex organs such as the lung or heart is currently limited by rudimentary bioreactor technologies. We propose to build the world’s first bioreactor system with integrated 3D noninvasive molecular imaging capable of evaluating organ constructs within it. Not only will the product help reduce the financial burden and improve the science of basic researchers, but it will also provide a method for quality-controlling organ constructs once recellularized scaffolds have been successfully translated to clinical-grade products.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government