New Experimental and Computational Tools for Tissue Engineering

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$202,972.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
1R43EB007866-01
Award Id:
85615
Agency Tracking Number:
EB007866
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
2155 ANALYSIS DR, STE C, BOZEMAN, MT, 59718
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
623858565
Principal Investigator:
GREGORY GILLISPIE
(701) 237-4908
GILLISPIE@DAKOTATECHNOLOGIES.COM
Business Contact:
GREGORY GILLISPIE
() -
gillispie@fluorescenceinnovations.com
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): Tissue engineering aims to create functional biologic prostheses by suspending dissociated cells into a biodegradable polymer scaffold upon which new tissue forms. Better means are urgently needed to compare engineered tissues, particularly cartilage and other soft tissues, with normal tissue. Histology is slow, cumbersome, and destructive because it requires first sectioning the tissue, then staining it. In addition, the quantitative reliability of histology is marginal owing to high variability of the stain intensity and color. This Phase I SBIR application aims for a quantum leap forward in tissue assessment, which will be realized by combining a unique implementation of time-resolved fluorescence spectroscopy with Mon te-Carlo code that models light propagation in tissue. Using articular cartilage constructs as a model system, our team will demonstrate quantitative tracking of collagen expression in the chondrocytes, chondrocyte proliferation, and the spatial distributi on of the collagen cross-links forming adjacent to the chondrocytes in the extracellular matrix over the entire growth process. Specific Aim 1 is to track the activity of GFP that serves as a marker of collagen synthesis in chondrocytes and Specific Aim 2 is to track the activity of collagen cross-linker formation as it develops in the region around the chondrocytes. Once successfully demonstrated, these capabilities will make it possible to test a vastly expanded number of variables that potentially affect tissue growth and the ultimate function of the construct. Tests of high throughput tissue engineering in Phase II could ultimately lead to prostheses that perform better and for a longer period after implantation. The data and scientific knowledge gained during the Phase I effort also has potential applications in real-time medical diagnostics and wound healing. Tissue engineering creates functional biologic prostheses by growing cells that form new tissue on a biodegradable polymer scaffold. The goal of t his Phase I SBIR application is improved techniques to test the laboratory grown tissues before they are implanted, resulting in prostheses that perform better and last longer.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government