Very High Gain and Low Noise Near Infrared Single Photon Counting Detectors and Arrays

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$99,975.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
NNX10CD53P
Agency Tracking Number:
094799
Solicitation Year:
2009
Solicitation Topic Code:
S1.01
Solicitation Number:
n/a
Small Business Information
Amplification Technologies, Inc.
1400 Coney Island Avenue, Brooklyn, NY, 11230-4120
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
134248751
Principal Investigator:
Yuriy Yevtukhov
Principal Investigator
(718) 951-8021
yevtukhov@amplificationtechnologies.com
Business Contact:
Avery Kornbluth
COO
(718) 951-8021
averyk@ampti.net
Research Institution:
n/a
Abstract
Amplification Technologies Inc ("ATI") proposes to develop the enabling material and device technology for the design of ultra low noise, high gain and low cross-talk & after pulsing near-infrared single photon counting photodetectors and photodetector arrays sensitive in the eyesafe wavelengths of 1550 nm and 1800 nm spectral region for remote and atmospheric sensing applications, based on the already proven mechanism of internal discrete amplification technology. We plan to achieve this by integrating the internal discrete amplification device design that gave promising results and proved the concept of internal discrete amplification mechanism in the InP material system. The primary accomplishments from the Phase I effort would be the development of ultra low noise, high gain, low noise and low cross-talk & after pulsing near-infrared photodetectors and photodetector arrays sensitive in the 1550 nm and 1800 nm spectral region. The technology of internal discrete amplification enables the combination of high speed, very high gain and ultra low noise. This is possible because the internal discrete amplification nullifies the effect of impact ionization coefficients and prevents the edge break down, with high quantum efficiency and high speed of operation. These photodetectors can be used in eye-safe Lidar/Ladar, atmospheric sensing, 3D imaging, missile seekers, battlefield target identification and recognition system. Potential civilian applications include fiber-optic telecommunications, remote sensing and laser spectroscopy.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government