Restoration of vestibular hair cells induced by AdMath1

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$138,575.00
Award Year:
2005
Program:
STTR
Phase:
Phase I
Contract:
1R41DC007772-01
Award Id:
76110
Agency Tracking Number:
DC007772
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
Genvec, Inc., 65 W Watkins Mill Rd, Gaithersburg, MD, 20878
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
DOUGLAS BROUGH
(240) 632-5540
dbrough@genvec.com
Business Contact:
(240) 632-5537
Research Institution:
UNIVERSITY OF KANSAS

UNIVERSITY OF KANSAS
LAWRENCE, KS 66045
LAWRENCE, KS, 66045

Nonprofit college or university
Abstract
Loss of vestibular hair cells can occur due to a variety of disorders and results in dysfunction of the vestibulo-occular reflex and loss of balance. Bilateral vestibular hypofunction due to aminoglycoside ototoxicity and other means is a devastating and currently untreatable chronic disorder because loss of vestibular hair cells is permanent. To date there is no prosthetic device such as a hearing aid or cochlear implant for loss of vestibular function. Complete recovery from vestibular loss may only be possible through replacement of the missing vestibular sensory cells and therefore it is important to investigate strategies for the restoration of vestibular sensory cells as potential treatment for these patients. During normal embryonic developmental the genesis of both auditory and vestibular hair cells depends on expression of the atonal homolog, math1. Recently we have demonstrated that delivery of the mathl gene can induce replacement of hair cells after aminoglycoside ototoxicity. Although a number of different vectors are capable of delivering genes to the inner ear, we have focused on the use of adenovectors because they induce transient gene expression, have well defined tropism that can be further modified, have a good safety record in clinical testing and are readily manufactured under GMP. In this phase I STTR we propose to translate our early research findings to more complete proof of feasibility of the product concept. Our objectives are to 1.) test if the mathl induced regeneration of sensory cells is due to transdifferentiation of cells in damaged sensory neuroepithelium, and 2.) determine if there is a relationship between the restoration of sensory cells and the delivered dose of vector expressing mathl. Phase II experiments will focus on the selection of an optimized vector design for formal preclinical testing. Our overall goal is to develop-a viable inner ear drug for balance disorders designed to treat bilateral vestibular hypofunction.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government