SBIR Phase I:Power Management for Energy Harvesting

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1013282
Agency Tracking Number: 1013282
Amount: $180,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: IC
Solicitation Number: NSF 09-609
Small Business Information
681 N Plano Rd, Suite 121, Richardson, TX, 75081
DUNS: 959220869
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Wayne Chen
 (972) 231-1606
Business Contact
 Wayne Chen
Title: PhD
Phone: (972) 231-1606
Research Institution
This Small Business Innovation Research (SBIR) Phase I project will research and develop state-of-the-art ultra-low power management integrated circuits (IC) for portable and energy harvesting solutions. The creation of floating gate technology for analog and power management applications will provide new methods and building blocks for solving ultra-low power consumption challenges needed for mobile and autonomous solutions. The novel modification of existing and newly developed analog processes and components will enable revolutionary high power, quality and reliable circuits, while maintaining an extremely low quiescent operating current. This is closely tied to energy harvesting solutions as the efficiency of transferring stored scavenged energy to electronic loads defines the size, cost, and adoption of autonomous systems. To make a harvesting system viable the modules will be highly efficient in their use of the available energy. An off-active switch module and an ultra-low quiescent current regulator will be developed utilizing floating gate techniques to obtain significant reductions in power consumption. The revolutionary off-active switch module, a function which does not exist in the market today, requires drawing near zero current from the battery when in the off-state. Low power regulators require ultra-low operating current levels needed to realize a harvesting system. The broader impact/commercial potential of this project is to provide circuit module building blocks for energy harvesting systems in market spaces such as wireless sensor networks. This will enable several of the harvesting and storage technologies currently under development in the US, gain greater market acceptance, reduce energy demand from non-renewable sources, and create technical leadership in the US for this market space. With the availability of these building blocks and making them readily available, system designers will have IC solutions in place to reduce their time in creating their systems to leverage energy harvesting. Up-integration of these modules can then be tailored for each application quickly, reducing the system cost and time to market.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government