Identification of small molecule furin-like protease inhibitors

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43GM088926-01
Agency Tracking Number: GM088926
Amount: $390,123.00
Phase: Phase I
Program: SBIR
Awards Year: 2009
Solicitation Year: 2009
Solicitation Topic Code: N/A
Solicitation Number: PHS2009-2
Small Business Information
DUNS: 182979893
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (208) 562-3746
Business Contact
Phone: (208) 562-3745
Research Institution
DESCRIPTION (provided by applicant): The overall goal of this proposal is to develop a non-invasive, real-time, quantifiable cell-based assay to detect and report on furin-like protease activity to identify small molecule inhibitors of furin-like proteases by high throughput screening (HTS). Furin-like proteolytic enzymes are members of the Proprotein Convertase (PC) family that serve to process immature latent proteins, including growth factors and hormones, receptors, plasma proteins, and matrix metalloproteases containing a specific recognition cleavage motif (RX(K/R)R?), to their mature or functional forms. Processing by furin-like protease family members, such as furin, PACE4, PC5/6, and PC7/8, contributes to development of several degenerative diseases, such as Alzheimer's disease, arteriolosclerosis, and arthritis. Furin-like protease expression and activity is necessary for processing substrates that enhance the cancer phenotype, contributing to cell transformation, tumor progression, metastasis, and angiogenesis. Further, furin-like proteolytic processing of viral coat glycoproteins is required for propagation of infectious viruses such as H5N1 avian influenza, HIV-1, human papillomavirus, ebola, yellow fever, and SARS-CoV. Furin-like proteases activate bacterial toxins found in anthrax, shigella, botulinum, pseudomonas, and diphtheria. Inhibition of furin-like proteolytic activity has been shown to halt toxicity of bacterial toxins, infectivity of viruses, and motility of cancer cells. We hypothesize that inhibiting furin-like proteolytic activity may lead to development of a therapeutic drug that inhibits a broad-spectrum of furin-like protease mediated disease. To aid in experimentation of this hypothesis, in specific aim 1A, we will develop a furin-like protease reporter, which non-invasively and quantitatively senses furin-like protease activity in real time and characterize its specificity and sensitivity to furin-like protease activity. In specific aim 1B, we will miniaturize this assay to adapt it to HTS. In specific aim 1C, we will perform HTS of several specialized small molecule libraries containing 71K compounds to identify furin-like protease inhibitory molecules. In specific aim 2A, a secondary screen will be employed to eliminate false positives, cytotoxic, and non-specific inhibitory molecules. Potency will be assessed by exposing the furin-reporter cells to various concentrations of the candidate compound to determine pIC50 values. In specific aim 2B, we subject the five most efficacious compounds to further validation by determining inhibition (IC50 value) of furin processing of physiological substrates using western blot analysis. Additionally, cytotoxicity will be gauged using cell proliferation assays. In specific aim 2C, the compound's ability to inhibit furin will be confirmed using purified furin in vitro. We will also investigate the molecule's specificity by performing in vitro inhibition assays with other serine proteases. At the conclusion of phase I, we expect to have identified at least one compound or derivative with IC50 lt 1uM that will be the subject of further analysis and targeted for drug development to treat furin-mediated diseases such as anthrax and cancer in subsequent years. PUBLIC HEALTH RELEVANCE: Millions of people worldwide are exposed to and/or contract furin-like protease mediated diseases such as HIV-1, ebola, avian influenza, human papillomavirus, yellow fever, SARS-CoV, anthrax, botulinum, measles, pseudomonas, shigella, diphtheria, arthritis, arteriosclerosis, Alzheimer's disease, and malignant cancer. Instead of searching for a therapeutic to address each pathogen and disease individually, targeting a single cellular protease may allow defeat of a broad spectrum of furin-like protease mediated disease. The studies described here will result in identification of a molecule that inhibits furin-like proteases and thus may be used to treat the diseases listed above.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government