Targeted CCR5 Gene Inactivation Using Peptide Nucleic Acids

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43AI076193-01A1
Agency Tracking Number: AI076193
Amount: $99,999.00
Phase: Phase I
Program: SBIR
Awards Year: 2008
Solicitation Year: 2008
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Small Business Information
HELIX THERAPEUTICS, LLC, 25 Science Park, New Haven, CT, 06511
DUNS: 788852437
HUBZone Owned: Y
Woman Owned: Y
Socially and Economically Disadvantaged: Y
Principal Investigator
 () -
Business Contact
Phone: (203) 772-2888
Research Institution
DESCRIPTION (provided by applicant): The proposed work is to develop a therapeutic gene targeting agent for the treatment of HIV disease. Our approach is to use triplex-forming oligonucleotides (TFOs) and peptide nucleic acids (PNAs), which bind to duplex DNA in a sequence-specific manner. Initial work has demonstrated that TFOs can stimulate recombination in mammalian cells by the ability of triple helices to provoke DNA repair and, thus, sensitize the target site to recombination. Using a series of chemic al modifications, the intracellular effectiveness of TFOs has been progressively enhanced. Our company, Helix Therapeutics, Inc. (HTI), was formed to commercialize this technology for the treatment of human diseases, such as HIV/AIDS. Entry inhibitors have recently emerged as a new class of HIV therapeutics. These drugs block cell surface receptors required for HIV entry into T-cells, such as the protein encoded by the CCR5 gene. The CCR5 chemokine receptor is a major co-receptor for R5-tropic HIV-1 strains , which are responsible for most cases of initial, acute HIV infection [10]. Individuals, who possess a homozygous inactivating mutation in the CCR5 gene, are almost completely resistant to infection by R5-tropic HIV-1 strains, with no other significant ad verse consequences [11]. Pharmaceutical companies are currently trying to develop entry- inhibitor drugs to block the receptor protein, although progress has been hindered by toxicity, efficacy and drug resistance. HTI is optimizing TFO-based technology as an alternative approach by targeting and inactivating the underlying gene for the receptor directly and, thereby, creating cells permanently resistant to infection by the HIV virus. These modified cells, unencumbered by HIV infection, would proliferate an d, as a result, restore and maintain a patient's immune system, even in the face of HIV infection. We propose to develop our lead PNA compound to target and inactivate specifically the CCR5 gene in human cells. Experiments will be done to determine the opt imal combination of PNA and donor DNA molecules, as well as the most appropriate cellular delivery methods required for maximally enhancing CCR5 gene targeting in several immune and hematopoietic model cell lines. In addition, we will test these conditions for achieving therapeutic gene modification in the intended target cells, human hematopoietic stem (CD34+) cells. Upon isolation of pure populations of cells, containing mutant CCR5 alleles, we will confirm the induced genotype(s) and phenotype(s) and wil l also test whether the mutant cells are resistant to HIV infection. In addition, we will test whether PNA-modified CD34+ cells engraft and properly differentiate in a mouse model of stem cell transplantation and whether the differentiated, CCR5-mutant imm une cells are resistant to HIV infection. The proposed studies are critical for developing a therapeutic gene targeting agent for the treatment of HIV disease because: (1) they will establish a PNA/DNA reagent set and appropriate transfection parameters, w hich result in high efficiency mutation of the CCR5 gene in both model cell lines and our eventual target cells, CD34+ cells, and (2) they will serve to demonstrate that PNA-induced CCR5 gene inactivation can result in resistance to HIV infection. PUBLIC HEALTH RELEVANCE: Over 40 million people are currently living with AIDS. Helix Therapeutics, Inc. is proposing to create cells permanently resistant to infection by the HIV virus, using a therapeutic gene targeting agent. These modified cells, unenc umbered by HIV infection, would proliferate, and, as a result, restore and maintain a patient's immune system, even in the face of HIV infection.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government