One-Meter Class Drilling for Planetary Exploration

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX08CD23P
Agency Tracking Number: 075118
Amount: $99,379.00
Phase: Phase I
Program: SBIR
Awards Year: 2008
Solicitation Year: 2007
Solicitation Topic Code: S5.03
Solicitation Number: N/A
Small Business Information
460 W 34th Street, New York, NY, 10001-2320
DUNS: 131364820
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Kiel Davis
 Principal Investigator
 (646) 459-7809
Business Contact
 Chris Chapman
Title: Business Official
Phone: (646) 459-7802
Research Institution
The purpose of the proposed effort is to understand and characterize the fundamental limitations of drilling one to three meters into challenging materials which may be encountered in robotic drilling in situ planetary missions. The one-to-three meter range has been identified as a critical regime for planetary exploration; e.g., for potentially identifying subsurface organic material on Mars or polar resource deposits on the Moon. While there has been some technology development in planetary subsurface access, there is currently no surefire flight-like approach to robotically getting to this depth through layers of material like rock (most challenging being basalt), regolith, and icy mixtures. In Phase 1, we will experimentally identify the relative utility of rotary vs. rotary percussive drilling in the most challenging target materials under a variety of operational parameters, and extrapolate these results to three meters. Thus far there has been no apples-to-apples comparison of rotary vs. rotary-percussive drilling in this depth regime, though it is believed that rotary-percussive drilling has many advantages over rotary drilling including better penetration in hard targets. This will be a very test-heavy program. We will minimize costs by using an already available test rig - our one-of-a-kind one-meter class lunar drilling platform with rotary and rotary-percussive capability. This is an instrumented rig so we can measure system health and reactions back into the platform and we have the ability to vary drilling operational parameters to test the limits of the system. We will perform tests in Mars and lunar simulant, also readily available in our extensive library of planetary analog materials. Using the lessons learned from Phase 1 and Honeybee Robotics' 13+ years experience in subsurface access and sampling, in Phase 2 we will build a 1-3 meter drill capable of penetrating a representative 3 meter test column of layered Mars and/or lunar simulant.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government