Dynamic Blade Shapes for Improved Helicopter Rotor Aeromechanics

Award Information
Agency:
Department of Defense
Branch
Army
Amount:
$69,993.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
W911W6-08-C-0008
Award Id:
81363
Agency Tracking Number:
A072-013-0971
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
31255 Cedar Valley Drive, Suite 327, Westlake Village, CA, 91362
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
005100560
Principal Investigator:
Kuo-yen Szema
Senior Scientist
(818) 865-3710
kyszema@hypercomp.net
Business Contact:
Vijaya Shankar
Vice President
(818) 865-3713
vshankar@hypercomp.net
Research Institute:
n/a
Abstract
HyPerComp Inc. is teaming with NextGen Aeronautics and the Rotorcraft Center at the University of Maryland to explore the use of dynamic blade shapes (morphing) for improved rotor performance. Team members complement HyPerComp's core expertise in modeling and simulation of the rotors, NextGen's vast experience in actuator design and fabrication, and consultation from University of Maryland on dynamic blade shapes and smart materials. We propose a high-fidelity CFD-based investigation of five different dynamic blade shape concepts for rotor performance improvement: (1) camber variation; (2) trailing edge deflection; (3) leading edge droop; (4) blade twist distribution; and (5) tip geometry (sweep, anhedral, and planform taper). The Phase-I study would be performed for the Black Hawk UH-60A rotor. Hovering, steady-level high-speed forward, and high-thrust forward flights will be studied. Loosely coupled CFD-CSD (aero-elastic) simulations of the isolated rotor (no fuselage) will be performed to compute trimmed solutions and rotor performance. Phase-I study would conclude with the documentation of the effect of the different dynamic blade shapes on rotor performance and the down-selection of the most effective ones. For those concepts, a preliminary study of the physical realizability in terms of actuation mechanism concepts, power, stroke, and frequency will be performed.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government