Oxide Glass Fiber Optimized for Short Pulse IR Lasers

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$671,754.00
Award Year:
2005
Program:
SBIR
Phase:
Phase II
Contract:
2R44EY013889-02A1
Award Id:
60166
Agency Tracking Number:
EY013889
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
Infrared Fiber Systems, Inc., 2301-A Broadbirch Dr, Silver Spring, MD, 20904
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
DANHTRAN
(301) 622-9546
INFO@INFRAREDFIBERSYSTEMS.COM
Business Contact:
KENNETHLEVIN
(301) 622-9546
INFO@INFRAREDFIBERSYTEMS.COM
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): There is a clinical need for optimized fiber transmission of short pulse mid-IR laser radiation for surgical applications. Large potential markets such as skin resurfacing, dentistry, and ophthalmology utilize the Er:YSGG (2.79 mu/m) and Er:YAG (2.94 mu/m) lasers for therapeutic procedures. These lasers are capable of efficiently and precisely ablating both hard and soft tissues while avoiding the peripheral thermal damage and necrosis observed at other wavelengths. During Phase I, we developed an improved germanium fiber for short pulse and high power delivery by removal of bubbles, striation, and particles from the glass and began the development of a biocompatible fiber. Fiber transmission and fiber damage thresholds were determined at both short (500-ns) and long (8-300 us) pulse lengths, and laser parameters were optimized for efficient soft tissue ablation. Hybrid fibers consisting of silica and sapphire tips attached to a trunk fiber were developed to prevent damage of the fiber during contact tissue ablation, and tested for high power laser transmission. Phase II work will consist of six specific aims: (1) Improvement of the power handling and yield of germanium fibers by reducing remaining glass defects and improved fiber tip polishing. (2) Development of high performance and reliable germanium fibers from compositions that are biocompatible and pass the MEM cytotoxicity and intracutaneous injection tests, and study methods of fiber sterilizaton, such as autoclave and EtO. (3) Development of specialized fiber probe tip designs consisting of hybrid germanium/silica fibers, end caps, micro-lenses, side-firing fibers, and sculpted fiber tips, for flexible delivery of radiation during custom surgical procedures involving contact and non-contact laser tissue ablation. (4) Improvement of the Erbium laser spatial and temporal beam profile to provide higher fiber damage thresholds at the input/output ends of the fiber. (5) Q-switched ErYSGG transmission through fibers and specialty tips with measurement of the tissue ablation rates and quantification of the peripheral thermal and mechanical side effects. (6) Ablation of hard cataracts and precise incision of other, soft ophthalmic tissues for potential clinical applications using fiber delivery of short-pulse Er:YAG energy.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government