You are here

Advanced Catalyst For Microchannel Fuel Reformer

Award Information
Agency: Department of Defense
Branch: Army
Contract: DAAD17-02-C-0051
Agency Tracking Number: A012-0421
Amount: $70,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Timeline
Solicitation Year: N/A
Award Year: 2001
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
350 Hills Street, Suite 104
Richland, WA 99352
United States
DUNS: 004865247
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Qimin (Quentin) Ming
 Staff Scientist
 (509) 375-1093
 quentin@tekkie.com
Business Contact
 Patricia Irving
Title: President/CEO
Phone: (509) 375-1093
Email: irving@tekkie.com
Research Institution
N/A
Abstract

InnovaTek proposes to further develop a robust sulfur-tolerant steam reforming catalyst based on a proprietary formulation. As a component of an advanced fuel processor, this catalyst will be capable of reforming various hydrocarbons, including readilyavailable fuels such as gasoline, diesel, and natural gas. The research will also include determination of the optimal operating conditions such as temperature, space velocity, steam/C ratio, pressure, etc. where the catalyst has high activity andselectivity and also maintains stable and durable performance. At such conditions, carbon formation (coking) on the catalyst and catalyst support shall be minimized.The effect of various parameters on the performance of the catalyst will also be investigated. These include catalyst composition, total loading amount, the effect of different promoters and additives, and preparation method. Performance of the catalystwill be tested in a microchannel reactor that is designed to produce enough hydrogen to power a 100-watt fuel cell. Fuel cells are clean power generators with high-energy efficiency, and are projected to be a significant portion of total energy produced in the next three decades. Due to their high power density, quick dynamic response to power demand, and lowoperating temperature, polymer electrolyte membrane (PEM) fuel cells are envisioned to be useful in a wide range of power applications, such as vehicular (50-200 kW), residential (5-10 kW), portable (10-1000 W), and stationary (MW).The projected commercialization of PEM fuel cells requires the availability of economical pure hydrogen. Reforming of various hydrocarbons, such as methanol, natural gas, gasoline, and diesel for the production of hydrogen, is being considered for bothstationary and mobile applications because it offers higher hydrogen density (for example, 12.7% for gasoline) than metal hydride (1.7%), carbon nano-tube (5.8%) and other technologies of hydrogen carriers.Due to the existing distribution and supply infrastructure, gasoline and diesel are attractive choices as primary fuels to generate hydrogen for use by fuel cells. Gasoline has sulfur concentrations in the range of 50 to 300 ppm, and the concentration ofsulfur in diesel is higher than that of gasoline. For small and portable power applications it is unlikely that adding a desulfurization unit to the reformer is practical because of size and weight constraints. Therefore, catalysts with improved sulfur andcoke resistance for steam reforming of readily available hydrocarbons, such as gasoline and diesel would be highly desirable. Such catalysts must also have high activity, selectivity, and durability.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government