Microsphere Coatings for Protein Arrays

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$99,933.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
1R43RR022646-01A1
Award Id:
85952
Agency Tracking Number:
RR022646
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
INNOVATIVE SURFACE TECHNOLOGIES, LLC, 1000 WESTGATE DR, STE 115, ST. PAUL, MN, 55114
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
148070860
Principal Investigator:
PATRICK GUIRE
(651) 209-9757
PGUIRE@ISURTEC.COM
Business Contact:
WAYNE VORT
() -
wvandervort@isurtec.com
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): This SBIR project is designed to develop a versatile and cost-effective coating technology for surfaces used in microarray devices, especially for proteomic and genomic analyses. The virtual well strip, slide or plate array will be developed with new multifunctional photoactivatible crosslinking reagents for covalent thin film immobilization of micro- and nano-particles. The hydrophilic microparticles will form immobilized biomolecule assay sites and the hydrophobic na noparticles will form superhydrophobic nanotextured surface separating the virtual well assay sites. The Phase II work is expected to develop a dense array capability utilizing self-encoded microparticles to provide multianalyte assay capability in eac h site or address of a microarray, with confidence of at least one million analyte capability on microscope slide array. Specific aims of this Phase I proposal include: 1) reproducible and cost-effective synthesis of a new class of oligofunctional pho toreactive crosslinking reagents and their utility in immobilizing microparticles with covalent thin film generation on array support surfaces; 2) preparation of virtual well arrays via patterned immobilization of hydrophilic microparticles in assay site s separated by superhydrophobic nanotextured surfaces; and 3) demonstrate superior characteristics of proteomic arrays formed with immobilized microparticles vs flat surfaces. This proposed work is expected to generate new microarray coating technolog y which will provide significant improvements in analyte capacity (number) per chip, analyte assay sensitivity, and ease of sample application. The Phase I project will produce a new class of photoreactive film-forming reagents useful for coating a large v ariety of diagnostic and implantable medical devices, including the generation of superhydrophobic nanotextured surfaces for a variety of medical, diagnostic and electronic industry applications. The benefit of this proposed project to public health would be less expensive and more accurate microarrays for genetic and proteomic analysis. As genetic testing increases and more specific genetic predispositions to drug interactions are understood, the testing will need to be cheaper and more reliable. Additiona lly, the improved microarrays will benefit researchers studying protein-protein interactions which may ultimately greatly aid in disease management.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government