Advanced Low Temperature Emissions Control Technology for MTBE Destruction

Award Information
Agency:
Environmental Protection Agency
Branch
n/a
Amount:
$0.00
Award Year:
2002
Program:
SBIR
Phase:
Phase I
Contract:
68D03045
Award Id:
56302
Agency Tracking Number:
68D03045
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
P.O. Box 368, Amherst, MA, 01004
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
JRKittrell
() -
Business Contact:
(413) 549-5506
Research Institute:
n/a
Abstract
There is an immediate and growing need for technology to remediate groundwater and soils contaminated with methyl tertiary butyl ether (MTBE) as well as with associated benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. Gasoline containing MTBE has leaked into groundwater, presenting both health risks and objectionable odor and taste in lakes, aquifers, and urban wells in 49 states. Due to the specific physical and chemical properties of MTBE, conventional technologies cannot remediate MTBE-contaminated groundwater satisfactorily. In the Phase I research project, KSE, Inc., established the technical feasibility of a novel technology to remediate MTBE-contaminated groundwater and soils. One major innovation provides a novel technology to completely destroy MTBE and BTEX in air from groundwater strippers or soil vapor extraction. Extremely low temperature catalytic oxidation has been achieved with a new class of catalysts designed specifically for these compounds. Operating temperatures of 30-80¿C were achieved. The new catalyst activity is orders of magnitude greater than that of the traditional platinum alumina catalyst. The low temperature operation allows use of advanced design materials to further lower pollution control costs to 5-15 percent of those of conventional methods. With the commercialization of this new class of catalysts, an inexpensive, compact, and effective technique will be available for cleaning up groundwater and soils contaminated by fuel oxygenates, avoiding the cost and size of traditional high temperature catalytic oxidizers, with their attendant heat exchangers and piping systems. This new class of catalysts will be commercialized in the Phase II research project. The project involves catalyst optimization and kinetic studies offering both mechanistic insight and design procedures. Large-scale prototype operation will be undertaken to demonstrate both the catalyst performance and such materials of construction as fiberglass-reinforced plastic, made possible by the low temperature catalyst operation. A competitive cost analysis of the technology relative to other alternatives will be performed for MTBE remediation. It is anticipated that a cost-effective technology will be developed for remediation of MTBE-contaminated groundwater that is capable of rapid deployment.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government