You are here

Seismic AI in RealTime for Informed Drilling and Fracking

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-SC0021704
Agency Tracking Number: 0000259015
Amount: $249,966.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: 26c
Solicitation Number: N/A
Timeline
Solicitation Year: 2021
Award Year: 2021
Award Start Date (Proposal Award Date): 2021-06-28
Award End Date (Contract End Date): 2022-03-27
Small Business Information
2839 Paces Ferry Rd. #1160
Atlanta, GA 30339-6224
United States
DUNS: 961914884
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: Yes
Principal Investigator
 Jesse Williams
 (415) 744-4464
 jwilliams@globaltechinc.com
Business Contact
 Ash Thakker
Phone: (770) 803-3001
Email: admin@globaltechinc.com
Research Institution
 Georgia Institute of Technology
 
926 Dalney Street, NW,
Atlanta, GA 30332-0415
United States

 Nonprofit College or University
Abstract

The US Energy Information Administration (EIA) estimates that Unconventional Oil and Gas (UOG) will enable the US energy security and dominance through 2050. An array of technologies are required to support the EIA’s growth projections. Extended-lateral horizontal drilling and high-volume hydraulic fracturing have challenges, and the current recovery efficiency estimates range from 10 – 20%. Advances in real-time diagnostics and analytics are required to increase the efficiency of fracturing and reduce the environmental risks of UOG. Our team of researchers in machine learning, geophysics, and civil engineering propose to develop a “SeisMic AI in RealTime for hydraulic Fracture Remote-sensing And Characterization” (SMART FRAC) tool thatcan identify the micro-seismic events (event type and focal mechanism) to can help manage operations and mitigate the risk of hazardous seismic events during drilling and fracking operations. This tool builds on the current GTC capabilities of micro-seismic analysis by using novel deep learning algorithms for detailed real-time discrimination. We will leverage our technology developed for the US Air Force, which uses deep learning to discriminate nuclear blast from earthquakes through a global sensor network. Phase I objectives to demonstrate the feasibility of the SMART FRAC tool are: Identify and collect sufficient number of field seismic events with well-documented seismic signals and known focal mechanisms in different settings, for instance, during geothermal or hydraulic fracturing operations. Generate acoustic emission data in lab settings of rock fracture at different temperature-pressure conditions to be used as training data set for machine learning algorithms. Combine laboratory acoustic emission data with field seismic events data to develop a deep learning focal-mechanism solver. Demonstrate ability to discriminate event types (shear, hydraulic, thermal) using deep learning SMART FRAC tool. High pressure-temperature conditions and the requirement of large-volume and long-term circulation of exotic fluids, enhanced geothermal system reservoirs will undergo prolonged thermo-chemo-mechanical perturbations resulting in evolutionary changes in its reservoir properties and stress states. The tool proposed in this study will enable geothermal and fracking operators to detect, diagnose, and characterize the nature or cause of the micro-seismic events and help predict the stress state evolution and reservoir-induced seismicity. Such advancement can significantly improve the safety and efficiency of drilling into hot rocks, controlling the flow through fracture networks, and minimizing risk of inducing unwanted possibly damaging earthquakes. Successful UOG energy exploitation can impact the supply and security of U.S. energy. Knowledge learned from this project will also offer insights into earthquake physics, geomechanics, and the deployment of machine learning to quantify the uncertainties associated with signal quality, diverse rock, and fluid properties, and interwoven hydro-thermo-chemo-mechanical processes in subsurface.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government