You are here

A NEW BIOSENSOR BASED ON CATASTROPHIC PROTEIN CHANGES

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43ES017567-01A1
Agency Tracking Number: ES017567
Amount: $106,003.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NIEHS
Solicitation Number: PHS2010-2
Timeline
Solicitation Year: 2010
Award Year: 2010
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
910 Technology Blvd STE G
Bozeman, MT 59718
United States
DUNS: 606162084
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 CHARLES THOMPSON
 (460) 243-4643
 CHARLES.THOMPSON@UMONTANA.EDU
Business Contact
 CHARLES THOMPSON
Phone: (406) 586-8420
Email: jon.nagy@nagyconsult.com
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): This Phase I project will test the idea that mechanostress-sensitive, fluorescent polymers can detect structural changes induced in proteins following reaction of the protein with small molecule inhibitors. This concept will be tested and proven using recombinant acetylcholinesterase (AChE) an enzyme that is known to undergo catastrophic denaturation when it reacts with organophosphate (OP) inhibitors. The scientific and technical merits of the idea will be tested in this Phase I period, and optimized to define a course of action for a Phase II project. The long-term goal is to develop and commercialize an entirely new class of polymeric sensors based on catastrophic denaturation. In Phase I, we will attach or place rAChE onto structurally reactive polymer film sensor elements in a manner that retains the enzyme's activity. The rAChE-film will be exposed to OP inhibitors causing the protein to respond structurally. This enzyme-inhibitor denaturation process causes a corresponding structural change in the attached reactive thin film, which results in a fluorescent/color change in the polymer that can be detected visually or though instrumental measurements. The principle challenges for this Phase I project are to determine: (a) if rAChE can be attached or inserted onto a biological matrix or polymeric surface containing a structural response element, and (b) if rAChE retains function when attached to the film and is inhibited when exposed to OP compounds. Project advantages are that ATERIS Technologies has developed polymeric response elements, has over three decades of experience with AChE and OP-AChE interactions including the production of recombinant protein. ATERIS will use these combined areas of expertise to accomplish the following milestones: AIM 1. Attach rAChE (test species) and natural AChE (control) to a model surface membrane (liposome) and ATERIS' polydiacetylene (PDA) thin film and optimize the attachment to retain enzyme function. AIM 2. Visualize a color or fluorescence change resulting from the reaction of PDA thin film coated- rAChE or liposome embedded rAChE with an OP insecticide oxon. PUBLIC HEALTH RELEVANCE: There are 150,000 and 300,000 toxicity incidences reported yearly in the US for exposure to organophosphate (OP) insecticides and millions treated worldwide. Structurally similar OP chemical nerve agents continue as a threat to civilian and military personnel and can compromise public health, injure or fatally harm humans. Realization of the proposed sensor device will allow for rapid assessment of environmental or military OP exposure.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government