NOVEL SOLUBILITY-ENHANCING PROTEIN EXPRESSION TECHNOLOGY

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$100,000.00
Award Year:
2009
Program:
SBIR
Phase:
Phase I
Contract:
1R43GM089553-01
Agency Tracking Number:
GM089553
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
LUCIGEN CORPORATION
2120 W. GREENVIEW DR., SUITE 9, MIDDLETON, WI, 53562
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
019710669
Principal Investigator:
ERIC STEINMETZ
(608) 265-5704
Business Contact:
JAMES STEINMETX
() -
dmead@lucigen.com
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): In the post-genomic era, a vast collection of protein-coding sequences is available for structural and functional analysis. Current structural genomics efforts seek to determine the complete repertoire of protein str uctures found in nature. The success of these efforts is expected to have a major impact on biomedicine, since most pharmaceuticals act upon proteins, and proteins are increasingly being developed for therapeutic uses. The favored host for recombinant prot ein expression is Escherichia coli. Despite many improvements, producing soluble proteins in E. coli is still a major bottleneck for structural genomics: typically, more than 50% of recombinant proteins are expressed in an insoluble form. Methods for scree ning growth conditions, host strains, and solubility enhancing fusion partners in the effort to optimize soluble protein expression are labor- and reagent-intensive. The goal of the proposed research is to develop a system of expression vectors and host st rains to improve soluble expression of recombinant proteins. The system will include a yellow fluorescent protein tag that will function as an in vivo reporter of recombinant protein expression and solubility. This simple visual readout will facilitate exp ression screening efforts. Further, we will exploit this reporter capability to conduct genetic screens to identify novel protein fusion partners that promote soluble expression of difficult targets, and we will incorporate these solubility tags into produ cts for protein expression and purification. The resulting system will enable parallel screening of fusion partners, host strains, and expression conditions to optimize target protein expression using a minimum amount of labor and reagents compared to conv entional methods. PUBLIC HEALTH RELEVANCE: Genome sequencing efforts have provided a glimpse at the complete collection of proteins encoded by humans as well as many pathogens. Full realization of the potential biomedical benefits of this genomic i nformation will require a more complete understanding of the structure and function of these proteins. Current structural genomics efforts seek to determine the complete repertoire of protein structures found in nature and revealed by genomic sequencing efforts. The success of these efforts is expected to have a major impact on biomedicine, since most pharmaceuticals act upon proteins, and proteins are increasingly being developed for therapeutic uses. Expression of proteins for structural and functional studies is usually undertaken in the bacterial host E. coli, but the production of foreign proteins in bacteria is hampered by an inability of many proteins to fold into a soluble conformation. The goal of the current proposed research is to develop a syst em for enhanced success of soluble protein expression in E. coli.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government