Ex Cyto DNA Sequencing from Single Bacterial Colonies

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$750,000.00
Award Year:
2009
Program:
SBIR
Phase:
Phase II
Contract:
2R44HG004095-02
Award Id:
80238
Agency Tracking Number:
HG004095
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
2120 W. GREENVIEW DR., SUITE 9, MIDDLETON, WI, 53562
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
019710669
Principal Investigator:
DAVIDMEAD
(608) 831-9011
DMEAD@LUCIGEN.COM
Business Contact:
() -
dmead@lucigen.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): The long term objective of this research is to develop improved DNA polymerases that will substantially advance Sanger and next generation sequencing technologies. The primary goal of the Phase I research was to deve lop a rapid and inexpensive method to perform Sanger sequencing directly from single bacterial colonies. This method bypasses the time and expense of template purification needed for conventional DNA sequencing. It is based on the development of a modified Taq fusion DNA polymerase (DNAP) with improved DNA affinity and processivity. Chromosomal integration and expression of such a polymerase into host cells used for cloning should enable a new concept, termed Ex cyto sequencing . Analogous to colony PCR, E x cyto sequencing will eliminate the overnight growth of bacterial cultures, expensive template purification, and the purchase of purified DNA polymerase. In the Phase I research we developed a new fusion polymerase with novel enzymatic attributes, which w as shown to improve multiple aspects of nucleic acid sequencing and amplification. In addition to sequencing trace amounts of DNA from a single bacterial colony, the new Taq fusion polymerase enabled the following procedures: sequencing difficult templates unresolved by other enzymes, sequencing directly from liquid cultures using as little as 5 ul of outgrowth media, tight DNA binding in a variety of buffer conditions, and long PCR (10 kb). The specific aims of the Phase II proposal are to complete the dev elopment and optimization of Ex cyto sequencing and to modify other DNA polymerases used in next generation sequencing, such as Bst, Klenow, and T4 DNAPs. These improved enzymes should provide superior read lengths and the ability to sequence through diffi cult structures, thereby improving the accuracy of base calling and the subsequent assembly of genomes. These enzymes will improve numerous nucleic acid synthesis applications, such as emulsion PCR, used for the in vitro clonal amplification of templates, whole genome amplification, long PCR amplification, and a host of other methods that are constrained by existing DNAP capabilities. PUBLIC HEALTH RELEVANCE: The success of the human genome project has spawned explosive growth in the demand for DNA sequence information. The discovery of new genes from a variety of species will have a large impact on understanding human health and disease. Despite improvements in speed and reduction in costs of DNA sequence analysis, the process is still time, labor, and cost-intensive. This proposal seeks to dramatically improve the speed while decreasing the costs of DNA sequencing by developing a next generation DNA polymerase.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government