Multifunctional UV CurableSol-Gel Organkic Hybrid Nanocomposite Encapsulation System

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$750,000.00
Award Year:
2009
Program:
SBIR
Phase:
Phase II
Contract:
DE-FG02-08ER85097
Award Id:
89790
Agency Tracking Number:
n/a
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
20600 Gramercy Place, Suite 203, Torrance, CA, 90501
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
612439146
Principal Investigator:
Kevin Yu
Mr.
(310) 320-1066
kyu@luminitco.com
Business Contact:
Engin Arik
Dr.
(310) 320-1066
earik@luminitco.com
Research Institution:
n/a
Abstract
Innovative approaches are being sought to develop cost-effective and improved encapsulation materials to protect photovoltaic cells/modules from water and oxygen, without the cost, weight, and complexity of current solutions. This project will develop a new multifunctional, UV-curable, SOl-gel-orgaNIC (SONIC) hybrid nanocomposite encapsulation system, which will have an excellent water/oxygen barrier and provide improved antireflection, superhydrophobic, ultra-violet (UV), and atomic oxygen (AO) resistant properties. In this approach, an encapsulant will be applied by direct deposition. The encapsulating process will be automated as a continuously-operating process for both rigid and flexible photovoltaic cells/modules, reducing overall cost by 50 percent. In Phase I, experimental demonstrations proved the feasibility of the SONIC concept by reacting the sol-gel glass with a polymer hybrid matrix. In Phase II, the SONIC process will be optimized, and the formulation will be scaled up for roll-to-roll mass production Commercial Applications and other Benefits as described by the awardee: The proposed technology should enable low-cost, easily manufactured, and mass-producible water/oxygen protective barriers for both rigid and flexible photovoltaic cells/modules. The overall cost of manufacturing photovoltaic cells/modules would be reduced by 50 percent, compared to the double-glass vacuum laminating system currently used. Potentially, this development could increase the uses of solar cells, particularly for flexible thin-film solar cells that can be adapted to non-planar surfaces

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government