A Novel Divertor Design Based on a Tungsten Wire Brush Tile

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$75,000.00
Award Year:
1997
Program:
SBIR
Phase:
Phase I
Contract:
DE-FG03-97ER82423
Award Id:
37243
Agency Tracking Number:
37243
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
7960 South Kolb, Tucson, AZ, 85706
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
Dr. Sumit Guha
Group Leader
(520) 574-1980
Business Contact:
Dr. Raouf O. Loutfy
President
(520) 574-1980
Research Institution:
n/a
Abstract
195 A Novel Divertor Design Based on a Tungsten Wire Brush Tile--Materials and Electrochemical Research (MER) Corp., 7960 South Kolb, Tucson, AZ 85706-9237; (520) 574-1980 Dr. Sumit Guha, Principal Investigator Dr. Raouf O. Loutfy, Business Official DOE Grant No. DE-FG03-97ER82423 Amount: $75,000 High heat flux and plasma facing materials are critical to the development of practical applications of magnetic fusion energy. Tungsten-, beryllium-, and carbon-based materials are candidates for plasma facing components (divertor tiles) to be bonded to a copper heat sink for thermal management during plasma disruptions. Among the metallic candidates, beryllium is less attractive due to its brittleness and the environmental hazards associated with fine particulates of beryllium itself and beryllium oxide. By comparison, tungsten is attractive due to its lower expansion coefficient, moderately high thermal conductivity, low sputtering rate, high melting point, and low cost; unfortunately, tungsten is also brittle at low temperatures. Residual stresses generated at the interface during bonding a tungsten tile to a copper substrate can result in cracks in tungsten tile or separation from the underlying copper heat sink, especially under severe thermal shock conditions. Such an event would have catastrophic consequences within a fusion reactor. By contrast, a tungsten wire brush bonded to a copper heat sink would alleviate the above shortcomings due to its increased compliance. This Phase I project will develop a tungsten wire brush with >95 vol. percent tungsten wire loading, and bond the tile to an underlying dispersion-strengthened copper heat sink using a graded interface. Commercial Applications and Other Benefits as described by the awardee: The processing approach will build on a unique composite processing technology developed at this company. The joint will be characterized for both its strength and thermal fatigue resistance by high heat flux testing at Sandia National Laboratories.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government