Low-Cost Arc Process to Produce Single-Walled Nano-TubesT Using Coal-Based Starting Materials

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG03-00ER83042
Agency Tracking Number: 60756S00-II
Amount: $600,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2001
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
7960 South Kolb Road, Tucson, AZ, 85706
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 R. Loutfy
 (520) 574-1980
Business Contact
 James Withers
Title: Chief Executive Officer
Phone: (520) 574-1980
Email: jcwithers@mercorp.com
Research Institution
60756 Recently discovered fullerene nano-tubes (also known as Single-Walled Nano-Tubes, SWNT) may have wide applicability because of their unique structure, as well as their physical and chemical properties. This project will develop a continuous reactor to economically produce high-yield SWNT using coal-based materials. The proposed reactor will utilize a flow-through design and allow control of production parameters, including catalyst composition and particle size, catalyst/coal ratio, temperature of reaction and annealing zones, and reaction time. The use of low cost coal-based materials as source of carbon, catalyst, and promoter will assure the low cost of the product. Phase I demonstrated that SWNT in good yield can be produced from coal based material. A plasma system, based on inductive coupling plasma, was developed and tested. Although the SWNT products were produced at moderate yield, the approach was shown to have potential for large-scale production and to be synergetic with the coal powder form. In Phase II, a flexible reactor design will be developed to introduce coal-based materials in powder form. A mathematical model that takes reaction parameters into account will be used to simulate the SWNT production process. The approaches will be scaled-up to produce commercial quantities of this novel and versatile material. Commercial Applications and Other Benefits as described by the awardee: High-yield, low cost SWNT should find a significant market in such applications as field emission devices, memory devices (high density memory arrays, memory logic switching arrays), Nano-MEMs, AFM imaging probes, distributed diagnostics sensors, and strain sensors. Other key applications include: thermal control materials, super-strength (100 times steel) and light weight reinforcement and nanocomposites, EMI shielding materials, catalytic support, gas storage materials, high surface area electrodes, and light weight conductor cable and wires.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government