Utilizing High Fidelity Simulations in Multidisciplinary Optimization of Aircraft Systems

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$99,956.00
Award Year:
2008
Program:
SBIR
Phase:
Phase I
Contract:
NNX08CA57P
Award Id:
87908
Agency Tracking Number:
075396
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
2890 Carpenter Road, Suite 1900, Ann Arbor, MI, 48108
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
134722656
Principal Investigator:
JimHe
Principal Investigator
(734) 477-5710
jim_he@miengsrv.com
Business Contact:
NickVlahopoulos
Chief Technical Officer
(734) 358-0792
nv@miengsrv.com
Research Institute:
n/a
Abstract
Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls, propulsion, corrosion, maintenance, and manufacturing. A lot of attention has been paid during the past fifteen years in the Multi-disciplinary Design Optimization (MDO) nature of the aircraft design process. However, a consistent void in aircraft design is the ability to integrate high-fidelity computational capabilities from multiple disciplines within an organized MDO environment. Integrating high fidelity simulation technology (that has been developed over the years though significant investments) within a MDO environment will constitute a disruptive technological development in aircraft design. Currently, each high fidelity simulation is rather compartmentalized, and at best a sequential interaction process is exercised. Integrating the high-fidelity computational capabilities from multiple disciplines within an organized MDO environment will provide the ability to capture the implications that design changes in a particular discipline have to all other disciplines. It will also be possible to share design variables among disciplines and thus identify the direction that design variables should follow based on objectives and constraints from multiple disciplines. During the Phase I effort the feasibility of utilizing high fidelity CFD simulations for shape optimization and combining them with a structural finite element simulation for strength considerations within a multi-discipline design optimization environment will be demonstrated. A wing configuration will be analyzed for showcasing the different steps of this development and the benefits.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government